Owlet: enabling spatial information in ubiquitous acoustic devices

Nakul Garg, Yang Bai, Nirupam Roy
{"title":"Owlet: enabling spatial information in ubiquitous acoustic devices","authors":"Nakul Garg, Yang Bai, Nirupam Roy","doi":"10.1145/3458864.3467880","DOIUrl":null,"url":null,"abstract":"This paper presents a low-power and miniaturized design for acoustic direction-of-arrival (DoA) estimation and source localization, called Owlet. The required aperture, power consumption, and hardware complexity of the traditional array-based spatial sensing techniques make them unsuitable for small and power-constrained IoT devices. Aiming to overcome these fundamental limitations, Owlet explores acoustic microstructures for extracting spatial information. It uses a carefully designed 3D-printed metamaterial structure that covers the microphone. The structure embeds a direction-specific signature in the recorded sounds. Owlet system learns the directional signatures through a one-time in-lab calibration. The system uses an additional microphone as a reference channel and develops techniques that eliminate environmental variation, making the design robust to noises and multipaths in arbitrary locations of operations. Owlet prototype shows 3.6° median error in DoA estimation and 10cm median error in source localization while using a 1.5cm × 1.3cm acoustic structure for sensing. The prototype consumes less than 100th of the energy required by a traditional microphone array to achieve similar DoA estimation accuracy. Owlet opens up possibilities of low-power sensing through 3D-printed passive structures.","PeriodicalId":153361,"journal":{"name":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458864.3467880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper presents a low-power and miniaturized design for acoustic direction-of-arrival (DoA) estimation and source localization, called Owlet. The required aperture, power consumption, and hardware complexity of the traditional array-based spatial sensing techniques make them unsuitable for small and power-constrained IoT devices. Aiming to overcome these fundamental limitations, Owlet explores acoustic microstructures for extracting spatial information. It uses a carefully designed 3D-printed metamaterial structure that covers the microphone. The structure embeds a direction-specific signature in the recorded sounds. Owlet system learns the directional signatures through a one-time in-lab calibration. The system uses an additional microphone as a reference channel and develops techniques that eliminate environmental variation, making the design robust to noises and multipaths in arbitrary locations of operations. Owlet prototype shows 3.6° median error in DoA estimation and 10cm median error in source localization while using a 1.5cm × 1.3cm acoustic structure for sensing. The prototype consumes less than 100th of the energy required by a traditional microphone array to achieve similar DoA estimation accuracy. Owlet opens up possibilities of low-power sensing through 3D-printed passive structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Owlet:在无处不在的声学设备中实现空间信息
本文提出了一种低功耗、小型化的声到达方向(DoA)估计和声源定位设计——Owlet。传统的基于阵列的空间传感技术所需的孔径、功耗和硬件复杂性使其不适合小型和功率受限的物联网设备。为了克服这些基本的限制,Owlet探索声学微结构来提取空间信息。它使用精心设计的3d打印超材料结构覆盖麦克风。该结构在录制的声音中嵌入了特定方向的签名。Owlet系统通过一次实验室校准来学习方向特征。该系统使用一个额外的麦克风作为参考通道,并开发了消除环境变化的技术,使设计对任意位置的噪声和多路径具有鲁棒性。在使用1.5cm × 1.3cm声学结构进行传感时,Owlet原型的DoA估计中值误差为3.6°,声源定位中值误差为10cm。该原型所消耗的能量不到传统麦克风阵列所需能量的百分之一,从而达到相似的DoA估计精度。Owlet通过3d打印的被动结构开辟了低功耗传感的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open source RAN slicing on POWDER: a top-to-bottom O-RAN use case Measuring forest carbon with mobile phones ThingSpire OS: a WebAssembly-based IoT operating system for cloud-edge integration SOS: isolated health monitoring system to save our satellites Acoustic ruler using wireless earbud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1