Post-Fault Power Grid Voltage Prediction via 1D-CNN with Spatial Coupling

Carson Hu, Guang Lin, Bao Wang, Meng Yue, Jack Xin
{"title":"Post-Fault Power Grid Voltage Prediction via 1D-CNN with Spatial Coupling","authors":"Carson Hu, Guang Lin, Bao Wang, Meng Yue, Jack Xin","doi":"10.1109/AI4I54798.2022.00016","DOIUrl":null,"url":null,"abstract":"We propose a one-dimensional convolutional neural network (1D-CNN) with spatial coupling for post-fault power grid voltage prediction. Our proposed deep learning framework was inspired by the celebrated Prony’s method in classical signal processing. Our spatio-temporal model significantly outperforms existing benchmarks, including long short-term memory model, and is applicable to other strong transients in power industries.","PeriodicalId":345427,"journal":{"name":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I54798.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a one-dimensional convolutional neural network (1D-CNN) with spatial coupling for post-fault power grid voltage prediction. Our proposed deep learning framework was inspired by the celebrated Prony’s method in classical signal processing. Our spatio-temporal model significantly outperforms existing benchmarks, including long short-term memory model, and is applicable to other strong transients in power industries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间耦合的一维cnn故障后电网电压预测
提出了一种具有空间耦合的一维卷积神经网络(1D-CNN)用于故障后电网电压预测。我们提出的深度学习框架受到经典信号处理中著名的proony方法的启发。我们的时空模型明显优于现有的基准,包括长短期记忆模型,并适用于电力行业的其他强瞬变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable recommendation system approach for a companies - seniors matching Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning Explainable Artificial Intelligence for a high dimensional condition monitoring application using the SHAP Method Evaluation of different deep learning approaches for EEG classification Autonomous Load Carrier Approaching Based on Deep Reinforcement Learning with Compressed Visual Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1