Yan Baoyu, Gen Li, H. Cao, Xiaozhong Wang, Zhongcheng Wang, Yulong Ji
{"title":"Experimental Study on the Effect of Interface Heat Transfer on Performance of Thermoelectric Generators","authors":"Yan Baoyu, Gen Li, H. Cao, Xiaozhong Wang, Zhongcheng Wang, Yulong Ji","doi":"10.1115/mnhmt2019-4156","DOIUrl":null,"url":null,"abstract":"\n Thermoelectric generators (TEGs) have attracted more and more attention for their usage in waste heat recovery techniques. A key challenge in thermoelectric power conversion is to create a significant temperature difference across the TEG. The interface heat transfer between heat exchanger and TEGs plays a key role in TEGs’ performance when the heat exchanger and TEGs have been determined. In this paper different thermal interface materials (TIMs) were used to create different interface heat transfer conditions. Firstly, the thermal interface conductance of TIMs is measured by using a steady state method. Then the performance of TEGs at different interface heat transfer condition was evaluated. It was found that interface heat transfer between heat exchanger and TEGs has a significant effects on the performance of TEGs.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"128 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric generators (TEGs) have attracted more and more attention for their usage in waste heat recovery techniques. A key challenge in thermoelectric power conversion is to create a significant temperature difference across the TEG. The interface heat transfer between heat exchanger and TEGs plays a key role in TEGs’ performance when the heat exchanger and TEGs have been determined. In this paper different thermal interface materials (TIMs) were used to create different interface heat transfer conditions. Firstly, the thermal interface conductance of TIMs is measured by using a steady state method. Then the performance of TEGs at different interface heat transfer condition was evaluated. It was found that interface heat transfer between heat exchanger and TEGs has a significant effects on the performance of TEGs.