Atiya Masood, Gang Chen, Yi Mei, Harith Al-Sahaf, Mengjie Zhang
{"title":"Genetic Programming Hyper-heuristic with Gaussian Process-based Reference Point Adaption for Many-Objective Job Shop Scheduling","authors":"Atiya Masood, Gang Chen, Yi Mei, Harith Al-Sahaf, Mengjie Zhang","doi":"10.1109/CEC55065.2022.9870322","DOIUrl":null,"url":null,"abstract":"Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"513 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.