Computational grids to solve large scale optimization problems with uncertain data

C. Triki, L. Grandinetti
{"title":"Computational grids to solve large scale optimization problems with uncertain data","authors":"C. Triki, L. Grandinetti","doi":"10.1109/IDAACS.2001.941995","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the use of computational grids to solve stochastic optimization problems. These problems are generally difficult to solve and are often characterized by a high number of variables and constraints. Furthermore, for some applications, it is required to achieve a real-time solution. Obtaining reasonable results is a difficult objective without the use of high-performance computing. We present a grid-enabled path-following algorithm and we discuss some experimental results.","PeriodicalId":419022,"journal":{"name":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2001.941995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we discuss the use of computational grids to solve stochastic optimization problems. These problems are generally difficult to solve and are often characterized by a high number of variables and constraints. Furthermore, for some applications, it is required to achieve a real-time solution. Obtaining reasonable results is a difficult objective without the use of high-performance computing. We present a grid-enabled path-following algorithm and we discuss some experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算网格解决不确定数据下的大规模优化问题
在本文中,我们讨论了使用计算网格来解决随机优化问题。这些问题通常很难解决,并且通常以大量变量和约束为特征。此外,对于某些应用程序,需要实现实时解决方案。如果不使用高性能计算,获得合理的结果是一个困难的目标。我们提出了一种网格路径跟踪算法,并讨论了一些实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Web-based mobile medical monitoring system The new methods of switch mode power supply designing for computer facilities GMSK neural network based demodulator Development of a stand alone monitoring system (S.A.MO.S.) Measurement of SCI patient's buttock pressure on wheelchair and bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1