{"title":"GMSK neural network based demodulator","authors":"A. Aiello, D. Grimaldi, S. Rapuano","doi":"10.1109/IDAACS.2001.941967","DOIUrl":null,"url":null,"abstract":"The pattern recognition characteristics of the Artificial Neural Networks are used to realise a real demodulator for Gaussian Minimum Shift-Keying signals, used in the GSM telecommunications. The demodulator utilizes the learning vector quantization (LVQ) neural network. It offers both greater efficiency in demodulating and less sensitivity to noise. In order to solve the problem regarding input signal synchronization, a pre-processing phase is organised. The demodulator prototype has been realised by implementing the pre-processing phase and the LVQ neural network on TMS320C30 digital signal processor. The demodulator has been tested according to the European Telecommunication Standard Institute recommendations.","PeriodicalId":419022,"journal":{"name":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2001.941967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The pattern recognition characteristics of the Artificial Neural Networks are used to realise a real demodulator for Gaussian Minimum Shift-Keying signals, used in the GSM telecommunications. The demodulator utilizes the learning vector quantization (LVQ) neural network. It offers both greater efficiency in demodulating and less sensitivity to noise. In order to solve the problem regarding input signal synchronization, a pre-processing phase is organised. The demodulator prototype has been realised by implementing the pre-processing phase and the LVQ neural network on TMS320C30 digital signal processor. The demodulator has been tested according to the European Telecommunication Standard Institute recommendations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GMSK神经网络的解调器
利用人工神经网络的模式识别特性,实现了GSM通信中高斯最小移位键控信号的真实解调。该解调器采用学习向量量化(LVQ)神经网络。它提供了更高的解调效率和更低的噪声敏感性。为了解决输入信号同步的问题,组织了预处理阶段。通过在TMS320C30数字信号处理器上实现预处理相位和LVQ神经网络,实现了解调样机。该解调器已根据欧洲电信标准协会的建议进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Web-based mobile medical monitoring system The new methods of switch mode power supply designing for computer facilities GMSK neural network based demodulator Development of a stand alone monitoring system (S.A.MO.S.) Measurement of SCI patient's buttock pressure on wheelchair and bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1