Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms

B. Budaitis, S. Jariwala, Lu Rao, D. Sept, K. Verhey, A. Gennerich
{"title":"Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms","authors":"B. Budaitis, S. Jariwala, Lu Rao, D. Sept, K. Verhey, A. Gennerich","doi":"10.1101/2020.09.03.281576","DOIUrl":null,"url":null,"abstract":"The kinesin-3 motor KIF1A functions in neurons where its fast and superprocessive motility is thought to be critical for long-distance transport. However, little is known about the force-generating properties of kinesin-3 motors. Using optical tweezers, we demonstrate that KIF1A and its C. elegans homolog UNC-104 undergo force-dependent detachments at ~3 pN and then rapidly reattach to the microtubule to resume motion, resulting in a sawtooth pattern of clustered force generation events that is unique among the kinesin superfamily. Whereas UNC-104 motors stall before detaching, KIF1A motors do not. To examine the mechanism of KIF1A force generation, we introduced mutations linked to human neurodevelopmental disorders, V8M and Y89D, based on their location in structural elements required for force generation in kinesin-1. Molecular dynamics simulations predict that the V8M and Y89D mutations impair docking of the N-terminal (β9) or C-terminal (β10) portions of the neck linker, respectively, to the KIF1A motor domain. Indeed, both mutations dramatically impair force generation of KIF1A but not the motor’s ability to rapidly reattach to the microtubule track. Homodimeric and heterodimeric mutant motors also display decreased velocities, run lengths, and landing rates and homodimeric Y89D motors exhibit a higher frequency of non-productive, diffusive events along the microtubule. In cells, cargo transport by the mutant motors is delayed. Our work demonstrates the importance of the neck linker in the force generation of kinesin-3 motors and advances our understanding of how mutations in the kinesin motor domain can manifest in disease.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.09.03.281576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The kinesin-3 motor KIF1A functions in neurons where its fast and superprocessive motility is thought to be critical for long-distance transport. However, little is known about the force-generating properties of kinesin-3 motors. Using optical tweezers, we demonstrate that KIF1A and its C. elegans homolog UNC-104 undergo force-dependent detachments at ~3 pN and then rapidly reattach to the microtubule to resume motion, resulting in a sawtooth pattern of clustered force generation events that is unique among the kinesin superfamily. Whereas UNC-104 motors stall before detaching, KIF1A motors do not. To examine the mechanism of KIF1A force generation, we introduced mutations linked to human neurodevelopmental disorders, V8M and Y89D, based on their location in structural elements required for force generation in kinesin-1. Molecular dynamics simulations predict that the V8M and Y89D mutations impair docking of the N-terminal (β9) or C-terminal (β10) portions of the neck linker, respectively, to the KIF1A motor domain. Indeed, both mutations dramatically impair force generation of KIF1A but not the motor’s ability to rapidly reattach to the microtubule track. Homodimeric and heterodimeric mutant motors also display decreased velocities, run lengths, and landing rates and homodimeric Y89D motors exhibit a higher frequency of non-productive, diffusive events along the microtubule. In cells, cargo transport by the mutant motors is delayed. Our work demonstrates the importance of the neck linker in the force generation of kinesin-3 motors and advances our understanding of how mutations in the kinesin motor domain can manifest in disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驱动蛋白-3运动KIF1A的致病性突变通过变构机制减少力的产生和运动
运动蛋白-3运动KIF1A在神经元中起作用,其快速和超进程运动性被认为对长距离运输至关重要。然而,人们对kinesin-3电机产生力的特性知之甚少。使用光学镊子,我们证明了KIF1A和它的线虫同源物UNC-104在~ 3pn时经历力依赖的分离,然后迅速重新连接到微管上以恢复运动,导致锯齿状的聚集力产生事件,这在驱动蛋白超家族中是独一无二的。UNC-104电机在分离前会失速,而KIF1A电机则不会。为了研究KIF1A产生力的机制,我们引入了与人类神经发育障碍相关的突变,V8M和Y89D,基于它们在动力蛋白-1中产生力所需的结构元件中的位置。分子动力学模拟预测,V8M和Y89D突变分别破坏颈连接子的n端(β9)或c端(β10)部分与KIF1A马达结构域的对接。事实上,这两种突变都极大地损害了KIF1A的力产生,但没有损害马达快速重新连接到微管轨道的能力。同型二聚体和异型二聚体突变马达也表现出速度、运行长度和着陆率的下降,而同型二聚体Y89D马达在微管上表现出更高频率的非生产性扩散事件。在细胞中,突变马达的货物运输被延迟。我们的工作证明了颈连接器在驱动蛋白-3马达产生力中的重要性,并推进了我们对驱动蛋白运动结构域突变如何在疾病中表现出来的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UBAP2L ensures homeostasis of nuclear pore complexes at the intact nuclear envelope BRG1 programs PRC2-complex repression and controls oligodendrocyte differentiation and remyelination. Unveiling the TRAPP: The role of plant TRAPPII in adaptive growth decisions. Calcium ions promote migrasome formation via Synaptotagmin-1. Determinants of minor satellite RNA function in chromosome segregation in mouse embryonic stem cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1