Decoding-Energy Optimal Video Encoding For x265

Christian Herglotz, Marco Bader, Kristian Fischer, A. Kaup
{"title":"Decoding-Energy Optimal Video Encoding For x265","authors":"Christian Herglotz, Marco Bader, Kristian Fischer, A. Kaup","doi":"10.1109/MMSP48831.2020.9287054","DOIUrl":null,"url":null,"abstract":"This paper presents optimal x265-encoder configurations and an enhanced optimization algorithm for minimizing the software decoding energy of HEVC-coded videos. We reach this goal with two contributions. First, we perform a detailed analysis on the influence of various encoder settings on the decoding energy. Second, we include an enhanced version of an algorithm called decoding-energy-rate-distortion optimization into x265, which we optimize for fast and efficient encoding. This algorithm introduces the estimated decoding energy as an additional optimization criterion into the rate-distortion cost function. We evaluate the extended encoder in terms of bitrate, distortion, and decoding energy, where we perform energy measurements to prove the superior energy efficiency. We find that the combination of the ‘fastdecoding’ tuning option of x265 with the enhanced decoding-energy-rate-distortion optimization leads to 27.2% and 26.0% of decoding energy savings for OpenHEVC and HM decoding, respectively. At the same time, compression efficiency losses of 38.2% and negligible decreases in encoder runtime of 0.39% can be observed.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents optimal x265-encoder configurations and an enhanced optimization algorithm for minimizing the software decoding energy of HEVC-coded videos. We reach this goal with two contributions. First, we perform a detailed analysis on the influence of various encoder settings on the decoding energy. Second, we include an enhanced version of an algorithm called decoding-energy-rate-distortion optimization into x265, which we optimize for fast and efficient encoding. This algorithm introduces the estimated decoding energy as an additional optimization criterion into the rate-distortion cost function. We evaluate the extended encoder in terms of bitrate, distortion, and decoding energy, where we perform energy measurements to prove the superior energy efficiency. We find that the combination of the ‘fastdecoding’ tuning option of x265 with the enhanced decoding-energy-rate-distortion optimization leads to 27.2% and 26.0% of decoding energy savings for OpenHEVC and HM decoding, respectively. At the same time, compression efficiency losses of 38.2% and negligible decreases in encoder runtime of 0.39% can be observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解码能量最佳视频编码为x265
本文提出了最佳的x265编码器配置和一种增强的优化算法,以最大限度地减少hevc编码视频的软件解码能量。我们通过两项贡献实现了这一目标。首先,我们详细分析了各种编码器设置对解码能量的影响。其次,我们在x265中加入了一种称为解码能量率失真优化的算法的增强版本,我们对其进行了优化,以实现快速高效的编码。该算法在码率失真代价函数中引入估计解码能量作为附加优化准则。我们在比特率、失真和解码能量方面评估了扩展编码器,并进行了能量测量以证明其优越的能量效率。我们发现x265的“快速解码”调优选项与增强的解码能量率失真优化相结合,分别为OpenHEVC和HM解码节省了27.2%和26.0%的解码能量。同时,压缩效率损失38.2%,编码器运行时间减少0.39%,可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1