MRAEA

Xin Mao, Wenting Wang, Huimin Xu, Man Lan, Yuanbin Wu
{"title":"MRAEA","authors":"Xin Mao, Wenting Wang, Huimin Xu, Man Lan, Yuanbin Wu","doi":"10.1145/3336191.3371804","DOIUrl":null,"url":null,"abstract":"Entity alignment to find equivalent entities in cross-lingual Knowledge Graphs (KGs) plays a vital role in automatically integrating multiple KGs. Existing translation-based entity alignment methods jointly model the cross-lingual knowledge and monolingual knowledge into one unified optimization problem. On the other hand, the Graph Neural Network (GNN) based methods either ignore the node differentiations, or represent relation through entity or triple instances. They all fail to model the meta semantics embedded in relation nor complex relations such as n-to-n and multi-graphs. To tackle these challenges, we propose a novel Meta Relation Aware Entity Alignment (MRAEA) to directly model cross-lingual entity embeddings by attending over the node's incoming and outgoing neighbors and its connected relations' meta semantics. In addition, we also propose a simple and effective bi-directional iterative strategy to add new aligned seeds during training. Our experiments on all three benchmark entity alignment datasets show that our approach consistently outperforms the state-of-the-art methods, exceeding by 15%-58% on Hit@1. Through an extensive ablation study, we validate that the proposed meta relation aware representations, relation aware self-attention and bi-directional iterative strategy of new seed selection all make contributions to significant performance improvement. The code is available at https://github.com/MaoXinn/MRAEA.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Entity alignment to find equivalent entities in cross-lingual Knowledge Graphs (KGs) plays a vital role in automatically integrating multiple KGs. Existing translation-based entity alignment methods jointly model the cross-lingual knowledge and monolingual knowledge into one unified optimization problem. On the other hand, the Graph Neural Network (GNN) based methods either ignore the node differentiations, or represent relation through entity or triple instances. They all fail to model the meta semantics embedded in relation nor complex relations such as n-to-n and multi-graphs. To tackle these challenges, we propose a novel Meta Relation Aware Entity Alignment (MRAEA) to directly model cross-lingual entity embeddings by attending over the node's incoming and outgoing neighbors and its connected relations' meta semantics. In addition, we also propose a simple and effective bi-directional iterative strategy to add new aligned seeds during training. Our experiments on all three benchmark entity alignment datasets show that our approach consistently outperforms the state-of-the-art methods, exceeding by 15%-58% on Hit@1. Through an extensive ablation study, we validate that the proposed meta relation aware representations, relation aware self-attention and bi-directional iterative strategy of new seed selection all make contributions to significant performance improvement. The code is available at https://github.com/MaoXinn/MRAEA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1