PADDY WETLAND PRODUCTIVITY ANALYSIS WITH LINEAR REGRESSION OF MACHINE LEARNING APPROACH

Bayu Nugraha, Agustina Hotma, Uli Tumanggor, Finki Dona, Marleny
{"title":"PADDY WETLAND PRODUCTIVITY ANALYSIS WITH LINEAR REGRESSION OF MACHINE LEARNING APPROACH","authors":"Bayu Nugraha, Agustina Hotma, Uli Tumanggor, Finki Dona, Marleny","doi":"10.20527/jtiulm.v7i2.138","DOIUrl":null,"url":null,"abstract":"Paddy is one of the priority crops in agricultural production. South Kalimantan is an area that produces Paddy. In paddy productivity in the southern Kalimantan region, there are paddy wetlands and paddy dryland. The need for paddy production in the southern Kalimantan region can increase or decrease every year. The method used in this study is a linear regression algorithm with a machine learning approach. Linear regression analysis basically predicts a variable's value based on its free variables. Linear regression only predicts variables whose data nature is intervals or ratios. Linear regression analysis can be used to examine the relationship between two or more variables. Linear regression can also make additional assumptions between variables through the most suitable lines of straight-line data points. This study is to determine the relationship between harvest area and productivity. As a result of trials using the machine learning approach, linear regression algorithms show a relationship between harvest and production area. The correlation test results can find relationships between data points so that linear regression can be used to predict. From the relationship between harvest area and productivity, a prediction accuracy of 95% was obtained.  ","PeriodicalId":330464,"journal":{"name":"Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20527/jtiulm.v7i2.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Paddy is one of the priority crops in agricultural production. South Kalimantan is an area that produces Paddy. In paddy productivity in the southern Kalimantan region, there are paddy wetlands and paddy dryland. The need for paddy production in the southern Kalimantan region can increase or decrease every year. The method used in this study is a linear regression algorithm with a machine learning approach. Linear regression analysis basically predicts a variable's value based on its free variables. Linear regression only predicts variables whose data nature is intervals or ratios. Linear regression analysis can be used to examine the relationship between two or more variables. Linear regression can also make additional assumptions between variables through the most suitable lines of straight-line data points. This study is to determine the relationship between harvest area and productivity. As a result of trials using the machine learning approach, linear regression algorithms show a relationship between harvest and production area. The correlation test results can find relationships between data points so that linear regression can be used to predict. From the relationship between harvest area and productivity, a prediction accuracy of 95% was obtained.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习方法的稻田湿地生产力线性回归分析
水稻是农业生产中的重要作物之一。南加里曼丹盛产稻谷。在加里曼丹南部地区的水稻生产力中,有水稻湿地和水稻旱地。加里曼丹南部地区对水稻生产的需求每年都会增加或减少。本研究使用的方法是结合机器学习方法的线性回归算法。线性回归分析基本上是根据一个变量的自由变量来预测它的值。线性回归只预测数据性质为区间或比率的变量。线性回归分析可以用来检验两个或多个变量之间的关系。线性回归还可以通过最合适的直线数据点在变量之间做出额外的假设。本研究旨在确定收获面积与生产力之间的关系。作为使用机器学习方法的试验结果,线性回归算法显示了收成和生产区域之间的关系。相关性检验结果可以发现数据点之间的关系,从而可以使用线性回归进行预测。根据产量与收获面积的关系,预测精度可达95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WEBSITE DESIGN INFORMATION SYSTEM OF RECORDING OFFENS AND PUNISHMENT STUDENTS SMK MUHAMMADIYAH 8 SILIRAGUNG USE WATERFALL DEVELOPMENT METHOD IDENTIFYING AND FIXING UX-FRICTION EMPLOYEE DEVELOPMENT WEBSITE WITH MIXED APPROACH HEART FRAMEWORK AND USABILITY TESTING GEOLOGY AND THE STUDY OF HEAVY METAL IMPACTS ON ENVIRONMENTAL QUALITY ASSESSMENT USING ARCGIS FOR INTERPRETATION DISTRIBUTION CLASSIFICATION OF STUDENT STUDY PERIOD USING NEURAL NETWORK BACKPROPAGATION ALGORITHM BASED ON ENTRY PATH (CASE STUDY: FACULTY OF ENGINEERING, UNIVERSITAS LAMBUNG MANGKURAT) OPTIMIZATION OF CNN + MOBILENETV3 FOR INSECT IDENTIFICATION: TOWARD HIGH ACCURACY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1