Waveform relaxation with overlapping based partitioning for fast transient simulation of package/board power distribution networks

S. Roy, A. Dounavis
{"title":"Waveform relaxation with overlapping based partitioning for fast transient simulation of package/board power distribution networks","authors":"S. Roy, A. Dounavis","doi":"10.1109/EPEPS.2012.6457889","DOIUrl":null,"url":null,"abstract":"Modeling of power distribution networks in electronic packages requires the two dimensional discretization of the distributed power/ground planes which can be computationally expensive. Recently, the waveform relaxation algorithm has been proposed for fast transient simulation of power/ground planes. However, due to the strong coupling of each node in a two dimensional (2D) physical space, the relaxation iterations exhibit slow convergence and special techniques need to be adopted to ensure efficient convergence. In this work, a novel waveform relaxation algorithm based on physically partitioning the power/ground plane into smaller overlapping subcircuits is presented. The overlap between the subcircuits provides greater exchange of information per iteration leading to accelerated convergence of the waveform relaxation algorithm. A numerical example has been provided to illustrate the validity of the proposed algorithm over full SPICE simulations.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modeling of power distribution networks in electronic packages requires the two dimensional discretization of the distributed power/ground planes which can be computationally expensive. Recently, the waveform relaxation algorithm has been proposed for fast transient simulation of power/ground planes. However, due to the strong coupling of each node in a two dimensional (2D) physical space, the relaxation iterations exhibit slow convergence and special techniques need to be adopted to ensure efficient convergence. In this work, a novel waveform relaxation algorithm based on physically partitioning the power/ground plane into smaller overlapping subcircuits is presented. The overlap between the subcircuits provides greater exchange of information per iteration leading to accelerated convergence of the waveform relaxation algorithm. A numerical example has been provided to illustrate the validity of the proposed algorithm over full SPICE simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于重叠划分的包/板配电网络快速瞬态仿真波形松弛
电子封装中的配电网络建模需要对分布式电源/地平面进行二维离散化,这在计算上是非常昂贵的。近年来,波形松弛算法被提出用于功率/地平面的快速瞬态仿真。然而,由于二维物理空间中各节点的强耦合,松弛迭代收敛速度慢,需要采用特殊的技术来保证有效收敛。在这项工作中,提出了一种新的基于将电源/地平面物理划分为更小的重叠子电路的波形松弛算法。子电路之间的重叠在每次迭代中提供了更多的信息交换,从而加速了波形松弛算法的收敛。最后给出了一个数值算例,通过全SPICE仿真验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear block-type leapfrog scheme for the fast simulation of multiconductor transmission lines with nonlinear drivers and terminations S-parameter based multimode signaling Simultaneous switching noise analysis of reference voltage rails for pseudo differential interfaces A partial homomorphic encryption scheme for secure design automation on public clouds Thermal characterization of TSV based 3D stacked ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1