{"title":"Waveform relaxation with overlapping based partitioning for fast transient simulation of package/board power distribution networks","authors":"S. Roy, A. Dounavis","doi":"10.1109/EPEPS.2012.6457889","DOIUrl":null,"url":null,"abstract":"Modeling of power distribution networks in electronic packages requires the two dimensional discretization of the distributed power/ground planes which can be computationally expensive. Recently, the waveform relaxation algorithm has been proposed for fast transient simulation of power/ground planes. However, due to the strong coupling of each node in a two dimensional (2D) physical space, the relaxation iterations exhibit slow convergence and special techniques need to be adopted to ensure efficient convergence. In this work, a novel waveform relaxation algorithm based on physically partitioning the power/ground plane into smaller overlapping subcircuits is presented. The overlap between the subcircuits provides greater exchange of information per iteration leading to accelerated convergence of the waveform relaxation algorithm. A numerical example has been provided to illustrate the validity of the proposed algorithm over full SPICE simulations.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Modeling of power distribution networks in electronic packages requires the two dimensional discretization of the distributed power/ground planes which can be computationally expensive. Recently, the waveform relaxation algorithm has been proposed for fast transient simulation of power/ground planes. However, due to the strong coupling of each node in a two dimensional (2D) physical space, the relaxation iterations exhibit slow convergence and special techniques need to be adopted to ensure efficient convergence. In this work, a novel waveform relaxation algorithm based on physically partitioning the power/ground plane into smaller overlapping subcircuits is presented. The overlap between the subcircuits provides greater exchange of information per iteration leading to accelerated convergence of the waveform relaxation algorithm. A numerical example has been provided to illustrate the validity of the proposed algorithm over full SPICE simulations.