SCMGR

Huanyu Liu, Ruifang He, Liangliang Zhao, Haocheng Wang, Ruifang Wang
{"title":"SCMGR","authors":"Huanyu Liu, Ruifang He, Liangliang Zhao, Haocheng Wang, Ruifang Wang","doi":"10.1145/3459637.3482476","DOIUrl":null,"url":null,"abstract":"Social summarization aims to produce a concise summary that describes the core content of a collection of posts on a specific topic. Existing methods tend to produce sparse or ambiguous representations of posts due to only using short and informal text content. Latest researches use social relations to improve diversity of summaries, yet they model social relations as a regularization item, which has poor flexibility and generalization. Those methods could not embody the deep semantic and social interactions among posts, making summaries still suffer from redundancy. We propose to use Social Context and Multi-Granularity Relations (SCMGR) to improve unsupervised social summarization. It learns more informative representations of posts considering both text semantics and social structure information without any annotated data. First, we design two sociologically motivated meta-paths to construct a social context graph among posts, and adopt a graph convolutional network to aggregate social context information from neighbors. Second, we design a multi-granularity relation decoder to capture the deeper semantic and social interactions from post-word and post-post aspects respectively, which can provide guidance for summary selection from semantic and social structure perspectives. Finally, a sparse reconstruction-based extractor is used to select posts that can best reconstruct original content and social network structure as summaries. Our approach improves the coverage and diversity of summaries. Experimental results on both English and Chinese corpora prove the effectiveness of our model.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social summarization aims to produce a concise summary that describes the core content of a collection of posts on a specific topic. Existing methods tend to produce sparse or ambiguous representations of posts due to only using short and informal text content. Latest researches use social relations to improve diversity of summaries, yet they model social relations as a regularization item, which has poor flexibility and generalization. Those methods could not embody the deep semantic and social interactions among posts, making summaries still suffer from redundancy. We propose to use Social Context and Multi-Granularity Relations (SCMGR) to improve unsupervised social summarization. It learns more informative representations of posts considering both text semantics and social structure information without any annotated data. First, we design two sociologically motivated meta-paths to construct a social context graph among posts, and adopt a graph convolutional network to aggregate social context information from neighbors. Second, we design a multi-granularity relation decoder to capture the deeper semantic and social interactions from post-word and post-post aspects respectively, which can provide guidance for summary selection from semantic and social structure perspectives. Finally, a sparse reconstruction-based extractor is used to select posts that can best reconstruct original content and social network structure as summaries. Our approach improves the coverage and diversity of summaries. Experimental results on both English and Chinese corpora prove the effectiveness of our model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SCMGR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1