Recognition of Real-Time BISINDO Sign Language-to-Speech using Machine Learning Methods

Muhammad Zulfikar Fauzi, R. Sarno, S. Hidayati
{"title":"Recognition of Real-Time BISINDO Sign Language-to-Speech using Machine Learning Methods","authors":"Muhammad Zulfikar Fauzi, R. Sarno, S. Hidayati","doi":"10.1109/ICCoSITE57641.2023.10127743","DOIUrl":null,"url":null,"abstract":"In this study, a sign language-to-speech system was developed to recognize and convert BISINDO's sign language into speech using a machine learning approach. The speech output will make it easier for the user to communicate with the other person and will make it easier for the other person to understand sign language and will improve the quality of communication. Using the dataset produced in this study and Mediapipe for feature extraction, the model accuracy was able to obtain a score of 98% using the Support Vector Machine method. However, the accuracy score of the model decreased drastically reaching 78% in trials conducted directly on users because the testing exceeded the system effective range. The results of the implementation of Sign Language-to-Speech succeeded in producing an output in form of audio speech without using an internet connection. The system was able to detect both dynamic and static gesture from the user in real-time.","PeriodicalId":256184,"journal":{"name":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCoSITE57641.2023.10127743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, a sign language-to-speech system was developed to recognize and convert BISINDO's sign language into speech using a machine learning approach. The speech output will make it easier for the user to communicate with the other person and will make it easier for the other person to understand sign language and will improve the quality of communication. Using the dataset produced in this study and Mediapipe for feature extraction, the model accuracy was able to obtain a score of 98% using the Support Vector Machine method. However, the accuracy score of the model decreased drastically reaching 78% in trials conducted directly on users because the testing exceeded the system effective range. The results of the implementation of Sign Language-to-Speech succeeded in producing an output in form of audio speech without using an internet connection. The system was able to detect both dynamic and static gesture from the user in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习方法的实时BISINDO手语语音识别
在本研究中,我们开发了一个手语转语音系统来识别BISINDO的手语并使用机器学习方法将其转换为语音。语音输出将使使用者更容易与他人交流,也将使他人更容易理解手语,并将提高交流质量。使用本研究生成的数据集和Mediapipe进行特征提取,使用支持向量机方法,模型准确率能够获得98%的分数。然而,在直接对用户进行的测试中,由于测试超出了系统的有效范围,模型的准确率分数急剧下降,达到78%。实施手语转语音的结果是,在不使用互联网连接的情况下,成功地产生了音频语音形式的输出。该系统能够实时检测用户的动态和静态手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Customer Relationship Management, Customer Retention, and the Mediating Role of Customer Satisfaction on a Healthcare Mobile Applications Revalidating the Encoder-Decoder Depths and Activation Function to Find Optimum Vanilla Transformer Model Goertzel Algorithm Design on Field Programmable Gate Arrays For Implementing Electric Power Measurement Instagram vs TikTok: Which Engage Best for Consumer Brand Engagement for Social Commerce and Purchase Intention? Air Pollution Prediction using Random Forest Classifier: A Case Study of DKI Jakarta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1