G. Mutinati, E. Brunet, T. Maier, S. Steinhauer, A. Kock
{"title":"Gas sensors based on silicon chip-to-chip synthesis of tin oxide nanowires","authors":"G. Mutinati, E. Brunet, T. Maier, S. Steinhauer, A. Kock","doi":"10.1109/ESSDERC.2011.6044170","DOIUrl":null,"url":null,"abstract":"We demonstrate a novel gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device has an extraordinary sensitivity to the toxic gas H2S. A concentration of only 1.4 ppm decreases the resistance of the sensor by ∼ 85%, which demonstrates a detection limit far in the ppb range. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.","PeriodicalId":161896,"journal":{"name":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2011.6044170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a novel gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device has an extraordinary sensitivity to the toxic gas H2S. A concentration of only 1.4 ppm decreases the resistance of the sensor by ∼ 85%, which demonstrates a detection limit far in the ppb range. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.