Modeling of faulty implantable MEMS pressure sensors

J. Miguel, Y. Lechuga, Mar Martínez, S. Bracho
{"title":"Modeling of faulty implantable MEMS pressure sensors","authors":"J. Miguel, Y. Lechuga, Mar Martínez, S. Bracho","doi":"10.1109/ICM.2014.7071811","DOIUrl":null,"url":null,"abstract":"Implantable biomedical devices generally comprise MEMS-type sensors used to acquire physiological signals, as well as CMOS electronics to perform powering, signal conditioning and data transmission. Among their requirements, reliability over an extended period of time ought to be spotlighted. Thus, modeling and realistic fault injection is essential to improve their long-term results. This work targets the development of a fault model for MEMS capacitive pressure sensors, to be part of smart stents with arterial blockage detection capabilities. The deflection profile of circular and square-shaped diaphragms under fault-free conditions has been analytically modeled. However, analytical models are inaccurate to describe the behavior of diaphragms under faulty conditions, which alter the geometry or material properties of the sensor. In these cases, the use of FE analysis tools is necessary to build a realistic fault model library, together with a comprehensive MEMS testing approach.","PeriodicalId":107354,"journal":{"name":"2014 26th International Conference on Microelectronics (ICM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 26th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2014.7071811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Implantable biomedical devices generally comprise MEMS-type sensors used to acquire physiological signals, as well as CMOS electronics to perform powering, signal conditioning and data transmission. Among their requirements, reliability over an extended period of time ought to be spotlighted. Thus, modeling and realistic fault injection is essential to improve their long-term results. This work targets the development of a fault model for MEMS capacitive pressure sensors, to be part of smart stents with arterial blockage detection capabilities. The deflection profile of circular and square-shaped diaphragms under fault-free conditions has been analytically modeled. However, analytical models are inaccurate to describe the behavior of diaphragms under faulty conditions, which alter the geometry or material properties of the sensor. In these cases, the use of FE analysis tools is necessary to build a realistic fault model library, together with a comprehensive MEMS testing approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
故障可植入MEMS压力传感器的建模
植入式生物医学设备通常包括用于获取生理信号的mems型传感器,以及用于供电、信号调理和数据传输的CMOS电子器件。在他们的要求中,长时间的可靠性应该得到重视。因此,建模和真实故障注入对于改善其长期结果至关重要。这项工作的目标是开发MEMS电容压力传感器的故障模型,成为具有动脉阻塞检测能力的智能支架的一部分。对圆形和方形隔膜在无故障条件下的挠度曲线进行了解析建模。然而,解析模型在描述故障条件下膜片的行为是不准确的,这改变了传感器的几何形状或材料特性。在这些情况下,使用有限元分析工具是必要的,以建立一个现实的故障模型库,以及一个全面的MEMS测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Haralick features for GEI-based human gait recognition Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of EEG data LVDS receiver with 7mW consumption at 1.5 Gbps Concatenation of dictionaries for recovery of ECG signals using compressed sensing techniques Effect of device, size, activation energy, temperature, and frequency on memristor switching time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1