{"title":"VLSI design of fuzzy-decision bit-flipping QC-LDPC decoder","authors":"Wenzhe Zhao, Minjie Lv, Hongbin Sun, Nanning Zheng, Tong Zhang","doi":"10.1109/ASICON.2013.6811972","DOIUrl":null,"url":null,"abstract":"In MLC NAND flash system, the hybrid hard-decision /soft-decision LDPC decoder prefers a high throughput bit-flipping decoder. Therefore, the high-efficiency silicon implementation of bit-flipping decoder becomes a practically relevant topic. This paper presents a so-called fuzzy-decision bit-flipping decoding algorithm to reduce the hardware consumption and average iteration numbers. Simulations and VLSI design show that the proposed design solution can improve upto 10% higher decoding throughput, and meanwhile reduce upto 40% less silicon cost, without performance reducing.","PeriodicalId":150654,"journal":{"name":"2013 IEEE 10th International Conference on ASIC","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON.2013.6811972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In MLC NAND flash system, the hybrid hard-decision /soft-decision LDPC decoder prefers a high throughput bit-flipping decoder. Therefore, the high-efficiency silicon implementation of bit-flipping decoder becomes a practically relevant topic. This paper presents a so-called fuzzy-decision bit-flipping decoding algorithm to reduce the hardware consumption and average iteration numbers. Simulations and VLSI design show that the proposed design solution can improve upto 10% higher decoding throughput, and meanwhile reduce upto 40% less silicon cost, without performance reducing.