A Formal Framework for Retainment Patterns for Trace-Based Model Transformations

Thomas Goldschmidt, A. Uhl
{"title":"A Formal Framework for Retainment Patterns for Trace-Based Model Transformations","authors":"Thomas Goldschmidt, A. Uhl","doi":"10.1109/SEAA.2011.23","DOIUrl":null,"url":null,"abstract":"Model-to-model (M2M) transformations play an important role within model-driven development. Modern M2Mapproaches support incremental updates to the target model according to changes in the source model(s). Bidirectional transformation approaches even allow to incrementally translate target model changes back to the source model. However, in some cases, e.g., if the target model should be refined either manually or automatically, it is important that target model changes are not overwritten if the original transformation is re-executed. There is currently only weak support for this kind of retainment by transformation engines. However, in many transformation engines a transformation trace is available which keeps record of a transformation's actions. In this paper, we exploit this information and define patterns which allow transformation engineers to trim transformations to facilitate the handling of target model changes. We describe a formal framework which serves as basis for implementing these retainment patterns.","PeriodicalId":107972,"journal":{"name":"2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2011.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Model-to-model (M2M) transformations play an important role within model-driven development. Modern M2Mapproaches support incremental updates to the target model according to changes in the source model(s). Bidirectional transformation approaches even allow to incrementally translate target model changes back to the source model. However, in some cases, e.g., if the target model should be refined either manually or automatically, it is important that target model changes are not overwritten if the original transformation is re-executed. There is currently only weak support for this kind of retainment by transformation engines. However, in many transformation engines a transformation trace is available which keeps record of a transformation's actions. In this paper, we exploit this information and define patterns which allow transformation engineers to trim transformations to facilitate the handling of target model changes. We describe a formal framework which serves as basis for implementing these retainment patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于跟踪的模型转换的保留模式的正式框架
模型到模型(M2M)转换在模型驱动的开发中扮演着重要的角色。现代m2m方法支持根据源模型中的更改对目标模型进行增量更新。双向转换方法甚至允许增量地将目标模型更改转换回源模型。然而,在某些情况下,例如,如果目标模型应该手动或自动地进行细化,那么如果重新执行原始转换,目标模型更改不被覆盖是很重要的。目前,转换引擎对这种保留的支持很弱。然而,在许多转换引擎中,转换跟踪是可用的,它保留了转换操作的记录。在本文中,我们利用这些信息并定义模式,这些模式允许转换工程师修剪转换以促进目标模型更改的处理。我们描述了一个正式的框架,作为实现这些保留模式的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Driven Development of Self-Describing Components for Self-Adaptive Distributed Embedded Systems Correct Implementation of Open Real-Time Systems An Adaptive Control Model for Non-functional Feature Interactions Extensible Polyglot Programming Support in Existing Component Frameworks Method Library Framework for Safety Standard Compliant Process Tailoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1