S. M. Taslim Reza, Norhafizan Ahmad, I. Choudhury, R. Ghazilla
{"title":"A study on muscle activities through surface EMG for lower limb exoskeleton controller","authors":"S. M. Taslim Reza, Norhafizan Ahmad, I. Choudhury, R. Ghazilla","doi":"10.1109/SPC.2013.6735124","DOIUrl":null,"url":null,"abstract":"The motion of human body is complex but perfect and integrated effort of brain, nerves and muscles. Exoskeleton is a promising idea for human rehabilitation of the lower limb that is weak enough to move. EMG signal contains the information of human movement and can be considered as one of the most powerful input to exoskeleton controller. In this research, the activity of the lower limb muscles that are responsible for human sit to stand and stand to sit movement has been studied. In this regard, the activities of three muscles viz. rectus femoris, vastus lateralis and biceps femoris have been observed and recorded to perceive their activation pattern. The experimental results show that the maximum voltage of vastus lateralis at activation moment is greater or equal to +0.1 mV or lesser or equal to -0.1 mVduring sit to stand and stand to sit movement whereas same throughput was found for biceps femoris during sit to stand and for rectus femoris during stand to sit movement only.","PeriodicalId":198247,"journal":{"name":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2013.6735124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The motion of human body is complex but perfect and integrated effort of brain, nerves and muscles. Exoskeleton is a promising idea for human rehabilitation of the lower limb that is weak enough to move. EMG signal contains the information of human movement and can be considered as one of the most powerful input to exoskeleton controller. In this research, the activity of the lower limb muscles that are responsible for human sit to stand and stand to sit movement has been studied. In this regard, the activities of three muscles viz. rectus femoris, vastus lateralis and biceps femoris have been observed and recorded to perceive their activation pattern. The experimental results show that the maximum voltage of vastus lateralis at activation moment is greater or equal to +0.1 mV or lesser or equal to -0.1 mVduring sit to stand and stand to sit movement whereas same throughput was found for biceps femoris during sit to stand and for rectus femoris during stand to sit movement only.