Preprocessing noisy EEG data using time-frequency peak filtering

M. Roessgen, B. Boashash, Mohamed Deriche
{"title":"Preprocessing noisy EEG data using time-frequency peak filtering","authors":"M. Roessgen, B. Boashash, Mohamed Deriche","doi":"10.1109/IEMBS.1993.978639","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of spectral parameter estimation for electroencephalogram (EEG) data in the presence of white Gaussian noise. A comparison of three known spectral estimation techniques is first presented. The methods work well at high signalto-noise ratio (SNR). However a t low SNR, which often characterises the EEG, these methods fail to produce good spectral estimates. Here, we discuss a new preprocessing technique for filtering noisy data. This technique is based on time-frequency peak filtering. Experimental results show that this method results in improved spectral estimates.","PeriodicalId":408657,"journal":{"name":"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1993.978639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper considers the problem of spectral parameter estimation for electroencephalogram (EEG) data in the presence of white Gaussian noise. A comparison of three known spectral estimation techniques is first presented. The methods work well at high signalto-noise ratio (SNR). However a t low SNR, which often characterises the EEG, these methods fail to produce good spectral estimates. Here, we discuss a new preprocessing technique for filtering noisy data. This technique is based on time-frequency peak filtering. Experimental results show that this method results in improved spectral estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时频峰值滤波的脑电信号预处理
研究了存在高斯白噪声的脑电图数据的频谱参数估计问题。首先对三种已知的光谱估计技术进行了比较。该方法在高信噪比下工作良好。然而,低信噪比通常是脑电图的特征,这些方法无法产生良好的频谱估计。本文讨论了一种新的滤波噪声数据的预处理技术。该技术基于时频峰值滤波。实验结果表明,该方法提高了光谱估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between perception threshold and thickness of the dorsal CSF-layer in epidural spinal cord stimulation Simulation of activation and propagation delay during tripolar neural stimulation Calculation of the potential field in nerve stimulation using a multigrid method Fluorinated hydrocarbons as MRI contrast agents Influence of light irradiation an the development of mouse eggs in culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1