{"title":"Random Telegraph Noise analysis as a tool to link physical device features to electrical reliability in nanoscale devices","authors":"F. Puglisi","doi":"10.1109/IIRW.2016.7904891","DOIUrl":null,"url":null,"abstract":"In this work, we report a detailed discussion on the techniques and the requirements needed to enable Random Telegraph Noise (RTN) analysis as a tool to investigate device reliability. Starting with the understanding of the RTN signal properties, a set of best practices to perform measurements and data analysis is established to guarantee reliable results and a correct ensuing physical interpretation. It will be shown that combining dedicated and careful experiments with refined data analysis and comprehensive physics simulations is hence required to enable RTN analysis as a safe and innovative investigation tool for electron devices. The effectiveness of RTN analysis as an investigation tool is demonstrated on both FinFET and resistive memory devices: the parameters of RTN as observed in the experiments performed on FinFETs allow understanding the details of the defects generation during stress in such devices; RTN analysis on RRAM allows understanding the physical origin of RTN in these devices and to estimate the physical properties of defects involved in the phenomenon.","PeriodicalId":436183,"journal":{"name":"2016 IEEE International Integrated Reliability Workshop (IIRW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Integrated Reliability Workshop (IIRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2016.7904891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this work, we report a detailed discussion on the techniques and the requirements needed to enable Random Telegraph Noise (RTN) analysis as a tool to investigate device reliability. Starting with the understanding of the RTN signal properties, a set of best practices to perform measurements and data analysis is established to guarantee reliable results and a correct ensuing physical interpretation. It will be shown that combining dedicated and careful experiments with refined data analysis and comprehensive physics simulations is hence required to enable RTN analysis as a safe and innovative investigation tool for electron devices. The effectiveness of RTN analysis as an investigation tool is demonstrated on both FinFET and resistive memory devices: the parameters of RTN as observed in the experiments performed on FinFETs allow understanding the details of the defects generation during stress in such devices; RTN analysis on RRAM allows understanding the physical origin of RTN in these devices and to estimate the physical properties of defects involved in the phenomenon.