Multi-objective Reinforcement Learning for Energy Harvesting Wireless Sensor Nodes

Shaswot Shresthamali, Masaaki Kondo, Hiroshi Nakamura
{"title":"Multi-objective Reinforcement Learning for Energy Harvesting Wireless Sensor Nodes","authors":"Shaswot Shresthamali, Masaaki Kondo, Hiroshi Nakamura","doi":"10.1109/MCSoC51149.2021.00022","DOIUrl":null,"url":null,"abstract":"Modern Energy Harvesting Wireless Sensor Nodes (EHWSNs) need to intelligently allocate their limited and unreliable energy budget among multiple tasks to ensure long-term uninterrupted operation. Traditional solutions are ill-equipped to deal with multiple objectives and execute a posteriori tradeoffs. We propose a general Multi-objective Reinforcement Learning (MORL) framework for Energy Neutral Operation (ENO) of EHWSNs. Our proposed framework consists of a novel Multi-objective Markov Decision Process (MOMDP) formulation and two novel MORL algorithms. Using our framework, EHWSNs can learn policies to maximize multiple task-objectives and perform dynamic runtime tradeoffs. The high computation and learning costs, usually associated with powerful MORL algorithms, can be avoided by using our comparatively less resource-intensive MORL algorithms. We evaluate our framework on a general single-task and dual-task EHWSN system model through simulations and show that our MORL algorithms can successfully tradeoff between multiple objectives at runtime.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern Energy Harvesting Wireless Sensor Nodes (EHWSNs) need to intelligently allocate their limited and unreliable energy budget among multiple tasks to ensure long-term uninterrupted operation. Traditional solutions are ill-equipped to deal with multiple objectives and execute a posteriori tradeoffs. We propose a general Multi-objective Reinforcement Learning (MORL) framework for Energy Neutral Operation (ENO) of EHWSNs. Our proposed framework consists of a novel Multi-objective Markov Decision Process (MOMDP) formulation and two novel MORL algorithms. Using our framework, EHWSNs can learn policies to maximize multiple task-objectives and perform dynamic runtime tradeoffs. The high computation and learning costs, usually associated with powerful MORL algorithms, can be avoided by using our comparatively less resource-intensive MORL algorithms. We evaluate our framework on a general single-task and dual-task EHWSN system model through simulations and show that our MORL algorithms can successfully tradeoff between multiple objectives at runtime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能量采集无线传感器节点的多目标强化学习
现代能量收集无线传感器节点(EHWSNs)需要在多个任务之间智能分配有限且不可靠的能量预算,以确保长期不间断运行。传统的解决方案在处理多个目标和执行事后权衡方面装备不足。我们提出了一个通用的多目标强化学习(MORL)框架,用于EHWSNs的能量中性操作(ENO)。我们提出的框架由一个新的多目标马尔可夫决策过程(MOMDP)公式和两个新的MORL算法组成。使用我们的框架,EHWSNs可以学习策略以最大化多个任务目标并执行动态运行时权衡。使用我们相对较少资源占用的MORL算法,可以避免通常与强大的MORL算法相关的高计算和学习成本。通过仿真,我们在单任务和双任务EHWSN系统模型上评估了我们的框架,并表明我们的MORL算法可以在运行时成功地在多个目标之间进行权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distance Estimation Method to Railway Crossing Using Warning Signs FPGA-Based Implementation of the Stereo Matching Algorithm Using High-Level Synthesis A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA Enhancing Autotuning Capability with a History Database UI Method to Support Knowledge Creation in Hybrid Museum Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1