Spoken language clustering in the i-vectors space

Stanisław Kacprzak
{"title":"Spoken language clustering in the i-vectors space","authors":"Stanisław Kacprzak","doi":"10.1109/IWSSIP.2017.7965607","DOIUrl":null,"url":null,"abstract":"This paper presents the results of language clustering in the i-vectors space, a method to determine in an unsupervised manner how many languages are in a data set and which recordings contain the same language. The most dense i-vectors clusters are found using the DBSCAN algorithm in a low dimensional space obtained by the t-SNE method. Quality of clustering for spherical k-means and the proposed method are tested with the data from NIST 2015 i-Vector Challenge. Usefulness of obtained clustering is tested in the challenge evaluation system. The results demonstrate that the proposed method allows to find 109 dense clusters with low impurity for 50 target languages.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the results of language clustering in the i-vectors space, a method to determine in an unsupervised manner how many languages are in a data set and which recordings contain the same language. The most dense i-vectors clusters are found using the DBSCAN algorithm in a low dimensional space obtained by the t-SNE method. Quality of clustering for spherical k-means and the proposed method are tested with the data from NIST 2015 i-Vector Challenge. Usefulness of obtained clustering is tested in the challenge evaluation system. The results demonstrate that the proposed method allows to find 109 dense clusters with low impurity for 50 target languages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
i向量空间中的口语聚类
本文介绍了i向量空间中语言聚类的结果,这是一种以无监督方式确定数据集中有多少语言以及哪些记录包含相同语言的方法。使用DBSCAN算法在t-SNE方法获得的低维空间中发现最密集的i向量聚类。使用NIST 2015 i-Vector Challenge的数据对球形k-means聚类质量和所提方法进行了测试。在挑战评估系统中测试了所得聚类的有效性。结果表明,该方法可以为50种目标语言找到109个低杂质的密集聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient frame-compatible stereoscopic video coding using HEVC screen content coding Reinforcement learning for video encoder control in HEVC Software and hardware HEVC encoding Ensemble of CNN and rich model for steganalysis IVQAD 2017: An immersive video quality assessment database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1