Ensemble of CNN and rich model for steganalysis

Kai Liu, Jianhua Yang, Xiangui Kang
{"title":"Ensemble of CNN and rich model for steganalysis","authors":"Kai Liu, Jianhua Yang, Xiangui Kang","doi":"10.1109/IWSSIP.2017.7965617","DOIUrl":null,"url":null,"abstract":"Recent studies have indicated that well-designed convolutional neural network (CNN) has achieved comparable performance to the spatial rich models with ensemble classifier (SRM-EC) in digital image steganalysis. In this paper, we discuss the difference and correlation between a CNN model and a SRM-EC model, and explore the classification error rate varying with texture complexity of an image for both models. Then we propose an ensemble method to combine CNN with SRM-EC by averaging their output classification probability. Compared with the state-of-the-art performance of spatial steganalysis achieved by maxSRMdZ, which is the latest variant of SRM-EC, experimental result shows that the proposed ensemble method furtherly improves the accuracy by nearly 2% in detecting S-UNIWARD and WOW on BOSSbase.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Recent studies have indicated that well-designed convolutional neural network (CNN) has achieved comparable performance to the spatial rich models with ensemble classifier (SRM-EC) in digital image steganalysis. In this paper, we discuss the difference and correlation between a CNN model and a SRM-EC model, and explore the classification error rate varying with texture complexity of an image for both models. Then we propose an ensemble method to combine CNN with SRM-EC by averaging their output classification probability. Compared with the state-of-the-art performance of spatial steganalysis achieved by maxSRMdZ, which is the latest variant of SRM-EC, experimental result shows that the proposed ensemble method furtherly improves the accuracy by nearly 2% in detecting S-UNIWARD and WOW on BOSSbase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN集成和丰富的隐写分析模型
近年来的研究表明,精心设计的卷积神经网络(CNN)在数字图像隐写分析中的性能可与具有集成分类器的空间丰富模型(SRM-EC)相媲美。本文讨论了CNN模型与SRM-EC模型的区别和相关性,探讨了两种模型的分类错误率随图像纹理复杂度的变化规律。然后,我们提出了一种集成方法,通过对CNN和SRM-EC的输出分类概率进行平均,将它们结合起来。与SRM-EC的最新变体maxSRMdZ的空间隐写分析性能相比,实验结果表明,所提出的集成方法在BOSSbase上对S-UNIWARD和WOW的检测精度进一步提高了近2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient frame-compatible stereoscopic video coding using HEVC screen content coding Reinforcement learning for video encoder control in HEVC Software and hardware HEVC encoding Ensemble of CNN and rich model for steganalysis IVQAD 2017: An immersive video quality assessment database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1