Reinforcement learning for video encoder control in HEVC

Philipp Helle, H. Schwarz, T. Wiegand, K. Müller
{"title":"Reinforcement learning for video encoder control in HEVC","authors":"Philipp Helle, H. Schwarz, T. Wiegand, K. Müller","doi":"10.1109/IWSSIP.2017.7965586","DOIUrl":null,"url":null,"abstract":"In todays video compression systems, the encoder typically follows an optimization procedure to find a compressed representation of the video signal. While primary optimization criteria are bit rate and image distortion, low complexity of this procedure may also be of importance in some applications, making complexity a third objective. We approach this problem by treating the encoding procedure as a decision process in time and make it amenable to reinforcement learning. Our learning algorithm computes a strategy in a compact functional representation, which is then employed in the video encoder to control its search. By including measured execution time into the reinforcement signal with a lagrangian weight, we realize a trade-off between RD-performance and computational complexity controlled by a single parameter. Using the reference software test model (HM) of the HEVC video coding standard, we show that over half the encoding time can be saved at the same RD-performance.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"425 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In todays video compression systems, the encoder typically follows an optimization procedure to find a compressed representation of the video signal. While primary optimization criteria are bit rate and image distortion, low complexity of this procedure may also be of importance in some applications, making complexity a third objective. We approach this problem by treating the encoding procedure as a decision process in time and make it amenable to reinforcement learning. Our learning algorithm computes a strategy in a compact functional representation, which is then employed in the video encoder to control its search. By including measured execution time into the reinforcement signal with a lagrangian weight, we realize a trade-off between RD-performance and computational complexity controlled by a single parameter. Using the reference software test model (HM) of the HEVC video coding standard, we show that over half the encoding time can be saved at the same RD-performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HEVC中视频编码器控制的强化学习
在今天的视频压缩系统中,编码器通常遵循一个优化过程来找到视频信号的压缩表示。虽然主要的优化标准是比特率和图像失真,但在某些应用中,该过程的低复杂性也可能很重要,使复杂性成为第三个目标。我们通过将编码过程视为一个及时的决策过程来解决这个问题,并使其易于强化学习。我们的学习算法在一个紧凑的函数表示中计算一个策略,然后在视频编码器中使用该策略来控制其搜索。通过将测量的执行时间包含在具有拉格朗日权值的增强信号中,我们实现了在单参数控制的rd性能和计算复杂度之间的权衡。使用HEVC视频编码标准的参考软件测试模型(HM),我们证明在相同的rd性能下可以节省一半以上的编码时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient frame-compatible stereoscopic video coding using HEVC screen content coding Reinforcement learning for video encoder control in HEVC Software and hardware HEVC encoding Ensemble of CNN and rich model for steganalysis IVQAD 2017: An immersive video quality assessment database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1