Lorena Poenaru-Olaru, Luís Cruz, Jan S. Rellermeyer, A. V. Deursen
{"title":"Maintaining and Monitoring AIOps Models Against Concept Drift","authors":"Lorena Poenaru-Olaru, Luís Cruz, Jan S. Rellermeyer, A. V. Deursen","doi":"10.1109/CAIN58948.2023.00024","DOIUrl":null,"url":null,"abstract":"AIOps solutions enable faster discovery of failures in operational large-scale systems through machine learning models trained on operation data. These models become outdated during the occurrence of concept drift, a term used to describe shifts in data distributions. In operation data concept drift is inevitable and it impacts the performance of AIOps solutions over time. Therefore, concept drift should be closely monitored and immediate maintenance to prevent erroneous predictions is required. In this work, we propose an automated maintenance pipeline for AIOps models that monitors the occurrence of concept drift and chooses the most appropriate model retraining technique according to the drift type.","PeriodicalId":175580,"journal":{"name":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIN58948.2023.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
AIOps solutions enable faster discovery of failures in operational large-scale systems through machine learning models trained on operation data. These models become outdated during the occurrence of concept drift, a term used to describe shifts in data distributions. In operation data concept drift is inevitable and it impacts the performance of AIOps solutions over time. Therefore, concept drift should be closely monitored and immediate maintenance to prevent erroneous predictions is required. In this work, we propose an automated maintenance pipeline for AIOps models that monitors the occurrence of concept drift and chooses the most appropriate model retraining technique according to the drift type.