Maintaining and Monitoring AIOps Models Against Concept Drift

Lorena Poenaru-Olaru, Luís Cruz, Jan S. Rellermeyer, A. V. Deursen
{"title":"Maintaining and Monitoring AIOps Models Against Concept Drift","authors":"Lorena Poenaru-Olaru, Luís Cruz, Jan S. Rellermeyer, A. V. Deursen","doi":"10.1109/CAIN58948.2023.00024","DOIUrl":null,"url":null,"abstract":"AIOps solutions enable faster discovery of failures in operational large-scale systems through machine learning models trained on operation data. These models become outdated during the occurrence of concept drift, a term used to describe shifts in data distributions. In operation data concept drift is inevitable and it impacts the performance of AIOps solutions over time. Therefore, concept drift should be closely monitored and immediate maintenance to prevent erroneous predictions is required. In this work, we propose an automated maintenance pipeline for AIOps models that monitors the occurrence of concept drift and chooses the most appropriate model retraining technique according to the drift type.","PeriodicalId":175580,"journal":{"name":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIN58948.2023.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

AIOps solutions enable faster discovery of failures in operational large-scale systems through machine learning models trained on operation data. These models become outdated during the occurrence of concept drift, a term used to describe shifts in data distributions. In operation data concept drift is inevitable and it impacts the performance of AIOps solutions over time. Therefore, concept drift should be closely monitored and immediate maintenance to prevent erroneous predictions is required. In this work, we propose an automated maintenance pipeline for AIOps models that monitors the occurrence of concept drift and chooses the most appropriate model retraining technique according to the drift type.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
维护和监控AIOps模型,防止概念漂移
AIOps解决方案通过对运行数据进行训练的机器学习模型,可以更快地发现运行大型系统中的故障。这些模型在概念漂移期间变得过时,概念漂移是用来描述数据分布变化的术语。在操作中,数据概念漂移是不可避免的,随着时间的推移,它会影响AIOps解决方案的性能。因此,应该密切监测概念漂移,并立即进行维护,以防止错误的预测。在这项工作中,我们提出了一个AIOps模型的自动化维护管道,该管道可以监控概念漂移的发生,并根据漂移类型选择最合适的模型再训练技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
safe.trAIn – Engineering and Assurance of a Driverless Regional Train Extensible Modeling Framework for Reliable Machine Learning System Analysis Maintaining and Monitoring AIOps Models Against Concept Drift Conceptualising Software Development Lifecycle for Engineering AI Planning Systems Reproducibility Requires Consolidated Artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1