Modal-based voltage stability analysis of low frequency AC transmission systems

T. Ngo, S. Santoso
{"title":"Modal-based voltage stability analysis of low frequency AC transmission systems","authors":"T. Ngo, S. Santoso","doi":"10.1109/PESGM.2016.7741422","DOIUrl":null,"url":null,"abstract":"The low frequency AC (LFAC) transmission, in which a power system is operated at a low frequency, i.e., below 50/60 Hz, is superior to the conventional 60 Hz system in terms of power transfer capability. In addition, due to low operating frequency, the line reactance is reduced and thus voltage drops along the line are decreased. The low frequency transmission thus offers a higher voltage profile for a power system. In other words, an LFAC system can be more voltage stable in comparison to the conventional 60-Hz system. This paper intends to focus on the voltage stability of an LFAC system. The theoretical foundations of a two-bus system are first discussed based on eigenvalue. A modified stability index calculation is also introduced for low frequency transmission to estimate the system stability accurately. The simulation results from a practical system verify that the LFAC transmission has great benefits over the 60 Hz system in terms of power transfer capability and voltage stability.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The low frequency AC (LFAC) transmission, in which a power system is operated at a low frequency, i.e., below 50/60 Hz, is superior to the conventional 60 Hz system in terms of power transfer capability. In addition, due to low operating frequency, the line reactance is reduced and thus voltage drops along the line are decreased. The low frequency transmission thus offers a higher voltage profile for a power system. In other words, an LFAC system can be more voltage stable in comparison to the conventional 60-Hz system. This paper intends to focus on the voltage stability of an LFAC system. The theoretical foundations of a two-bus system are first discussed based on eigenvalue. A modified stability index calculation is also introduced for low frequency transmission to estimate the system stability accurately. The simulation results from a practical system verify that the LFAC transmission has great benefits over the 60 Hz system in terms of power transfer capability and voltage stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模态的低频交流输电系统电压稳定性分析
低频交流(LFAC)传输是指电力系统以低于50/ 60hz的低频运行,其功率传输能力优于传统的60hz系统。此外,由于工作频率低,降低了线路电抗,从而降低了沿线路的电压降。因此,低频传输为电力系统提供了更高的电压分布。换句话说,与传统的60赫兹系统相比,LFAC系统可以具有更高的电压稳定性。本文主要研究LFAC系统的电压稳定性问题。首先讨论了基于特征值的双母线系统的理论基础。为了准确估计系统的稳定性,文中还引入了一种改进的低频传输稳定指数计算方法。实际系统的仿真结果验证了LFAC传输在功率传输能力和电压稳定性方面比60hz系统有很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A laboratory experiment of single machine synchronous islanding using PMUs and Raspberry Pi — A platform for multi-machine islanding Distributed vs. concentrated rapid frequency response provision in future great britain system Analysis of IEEE C37.118 and IEC 61850-90-5 synchrophasor communication frameworks A Review of probabilistic methods for defining reserve requirements DC fault protection strategy considering DC network partition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1