H. Manning, S. Biswas, Shailja Kumar, J. Holmes, J. Boland
{"title":"Neuromorphic- Inspired Behaviour in Core-Shell Nanowire Networks","authors":"H. Manning, S. Biswas, Shailja Kumar, J. Holmes, J. Boland","doi":"10.1109/NANO.2018.8626353","DOIUrl":null,"url":null,"abstract":"Abstrac t-Enginee ring smart-material s with emerge nt properti es requires designi ng and characte rizing systems with desirabl e behavio urs. Neurom orphic (brain-like) architectures require plasticity, where the strength of the connections and the time with which they decay can be modulated based on the magnitude and the repetition of the applied stimuli. This functionality is emulated in our complex nanowire network material through electrical resistive switching. The formation of nano-sized filamentary connections between overlapping wires across the network facilitates a controllable transition from a high resistance state to one (or more) lower resistance states with corresponding memory retention times. We report on the neuromorphic inspired behaviors that emerge from networks of metal nanowires coated with TiO2 shells.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstrac t-Enginee ring smart-material s with emerge nt properti es requires designi ng and characte rizing systems with desirabl e behavio urs. Neurom orphic (brain-like) architectures require plasticity, where the strength of the connections and the time with which they decay can be modulated based on the magnitude and the repetition of the applied stimuli. This functionality is emulated in our complex nanowire network material through electrical resistive switching. The formation of nano-sized filamentary connections between overlapping wires across the network facilitates a controllable transition from a high resistance state to one (or more) lower resistance states with corresponding memory retention times. We report on the neuromorphic inspired behaviors that emerge from networks of metal nanowires coated with TiO2 shells.