Xiaolu Liu , Jiaming Chen , Minghui Wang , Yang Wang , Zhouxing Su , Zhipeng Lü
{"title":"A two-phase tabu search based evolutionary algorithm for the maximum diversity problem","authors":"Xiaolu Liu , Jiaming Chen , Minghui Wang , Yang Wang , Zhouxing Su , Zhipeng Lü","doi":"10.1016/j.disopt.2020.100613","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the maximum diversity problem (MDP) which is equivalent to the quadratic unconstrained binary optimization (QUBO) problem with cardinality constraint. The MDP aims to select a subset of elements with given cardinality such that the sum of pairwise distances<span> between any two elements in the selected subset is maximized. For solving this computationally challenging problem, we propose a two-phase tabu search based evolutionary algorithm (TPTS/EA), which integrates several distinguishing features to ensure the diversity and the quality of the evolution, such as a two-phase tabu search algorithm which consists of a dynamic candidate list (DCL) strategy-based traditional tabu search in the first phase and a solution-based tabu search procedure to refine the search in the second phase, and two path-relinking based recombination operators to generate new offspring solutions. Tested on three sets of totally 140 public instances in the literature, the study demonstrates the efficacy of the proposed TPTS/EA algorithm in terms of both solution quality and computational efficiency. Specifically, our proposed TPTS/EA algorithm is able to improve the previous best known results for 2 instances, while matching the previous best-known solutions for 130 instances. We also provide experimental evidences to highlight the beneficial effect of several important components in our TPTS/EA algorithm.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"44 ","pages":"Article 100613"},"PeriodicalIF":0.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.disopt.2020.100613","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528620300475","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we study the maximum diversity problem (MDP) which is equivalent to the quadratic unconstrained binary optimization (QUBO) problem with cardinality constraint. The MDP aims to select a subset of elements with given cardinality such that the sum of pairwise distances between any two elements in the selected subset is maximized. For solving this computationally challenging problem, we propose a two-phase tabu search based evolutionary algorithm (TPTS/EA), which integrates several distinguishing features to ensure the diversity and the quality of the evolution, such as a two-phase tabu search algorithm which consists of a dynamic candidate list (DCL) strategy-based traditional tabu search in the first phase and a solution-based tabu search procedure to refine the search in the second phase, and two path-relinking based recombination operators to generate new offspring solutions. Tested on three sets of totally 140 public instances in the literature, the study demonstrates the efficacy of the proposed TPTS/EA algorithm in terms of both solution quality and computational efficiency. Specifically, our proposed TPTS/EA algorithm is able to improve the previous best known results for 2 instances, while matching the previous best-known solutions for 130 instances. We also provide experimental evidences to highlight the beneficial effect of several important components in our TPTS/EA algorithm.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.