Generalized min-up/min-down polytopes

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Discrete Optimization Pub Date : 2024-11-28 DOI:10.1016/j.disopt.2024.100866
Cécile Rottner
{"title":"Generalized min-up/min-down polytopes","authors":"Cécile Rottner","doi":"10.1016/j.disopt.2024.100866","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a time horizon and a set of <span><math><mi>N</mi></math></span> possible states for a given system. The system must be in exactly one state at a time. In this paper, we generalize classical results on min-up/min-down constraints for a 2-state system to an <span><math><mi>N</mi></math></span>-state system with <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. The minimum-time constraints enforce that if the system switches to state <span><math><mi>i</mi></math></span> at time <span><math><mi>t</mi></math></span>, then it must remain in state <span><math><mi>i</mi></math></span> for a minimum number of time steps. The minimum-time polytope is defined as the convex hull of integer solutions satisfying the minimum-time constraints. A variant of minimum-time constraints is also considered, namely the no-spike constraints. They enforce that if state <span><math><mi>i</mi></math></span> is switched on at time <span><math><mi>t</mi></math></span>, the system must remain on states <span><math><mrow><mi>j</mi><mo>≥</mo><mi>i</mi></mrow></math></span> during a minimum time. Symmetrically, they also enforce that if state <span><math><mi>i</mi></math></span> is switched off at time <span><math><mi>t</mi></math></span>, the system must remain on states <span><math><mrow><mi>j</mi><mo>&lt;</mo><mi>i</mi></mrow></math></span> during a minimum time. The no-spike polytope is defined as the convex hull of integer solutions satisfying the no-spike constraints. For both the minimum-time polytope and the no-spike polytope, we introduce families of valid inequalities. We prove that these inequalities are facet-defining and lead to a complete description of polynomial size for each polytope.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100866"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000458","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a time horizon and a set of N possible states for a given system. The system must be in exactly one state at a time. In this paper, we generalize classical results on min-up/min-down constraints for a 2-state system to an N-state system with N3. The minimum-time constraints enforce that if the system switches to state i at time t, then it must remain in state i for a minimum number of time steps. The minimum-time polytope is defined as the convex hull of integer solutions satisfying the minimum-time constraints. A variant of minimum-time constraints is also considered, namely the no-spike constraints. They enforce that if state i is switched on at time t, the system must remain on states ji during a minimum time. Symmetrically, they also enforce that if state i is switched off at time t, the system must remain on states j<i during a minimum time. The no-spike polytope is defined as the convex hull of integer solutions satisfying the no-spike constraints. For both the minimum-time polytope and the no-spike polytope, we introduce families of valid inequalities. We prove that these inequalities are facet-defining and lead to a complete description of polynomial size for each polytope.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
期刊最新文献
A polynomial-time algorithm for conformable coloring on regular bipartite and subcubic graphs Generalized min-up/min-down polytopes Editorial Board Anchor-robust project scheduling with non-availability periods Corrigendum to “Bilevel time minimizing transportation problem” [Discrete Optim.] 5 (4) (2008) 714–723
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1