首页 > 最新文献

Discrete Optimization最新文献

英文 中文
Computation of lower tolerances of combinatorial bottleneck problems
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-04-10 DOI: 10.1016/j.disopt.2025.100887
Gerold Jäger , Marcel Turkensteen
This paper considers the computation of lower tolerances of combinatorial optimization problems with an objective of type bottleneck, in which the objective is to minimize the element with maximum cost of a feasible solution. A lower tolerance can be defined as the supremum decrease such that the objective value remains the same. We develop a computational approach for generic problems with objective of type bottleneck and two specific approaches for the Linear Bottleneck Assignment Problem and the Bottleneck Shortest Path Problem, which have a similar complexity as solution approaches for these two problems. Finally, we present some experimental results on random instances for these problems.
本文考虑的是目标为瓶颈类型的组合优化问题的下公差计算,其中目标是最小化可行解中成本最大的元素。下限公差可定义为目标值保持不变的至高减小值。我们为具有瓶颈类型目标的一般问题开发了一种计算方法,并为线性瓶颈分配问题和瓶颈最短路径问题开发了两种具体方法,这两种方法与这两个问题的求解方法具有相似的复杂性。最后,我们介绍了这些问题在随机实例上的一些实验结果。
{"title":"Computation of lower tolerances of combinatorial bottleneck problems","authors":"Gerold Jäger ,&nbsp;Marcel Turkensteen","doi":"10.1016/j.disopt.2025.100887","DOIUrl":"10.1016/j.disopt.2025.100887","url":null,"abstract":"<div><div>This paper considers the computation of lower tolerances of combinatorial optimization problems with an objective of type bottleneck, in which the objective is to minimize the element with maximum cost of a feasible solution. A lower tolerance can be defined as the supremum decrease such that the objective value remains the same. We develop a computational approach for generic problems with objective of type bottleneck and two specific approaches for the Linear Bottleneck Assignment Problem and the Bottleneck Shortest Path Problem, which have a similar complexity as solution approaches for these two problems. Finally, we present some experimental results on random instances for these problems.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"56 ","pages":"Article 100887"},"PeriodicalIF":0.9,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143816640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A remark on the formulation given in “A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for routing problems with time windows”
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-04-02 DOI: 10.1016/j.disopt.2025.100888
İmdat Kara, Gözde Önder Uzun
In this paper, we show that, the formulation given in a recent paper [1] for the travelling salesman problem with time windows (TSPTW), may not find the optimal solution and then we recommend to add a new constraint to the model.
{"title":"A remark on the formulation given in “A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for routing problems with time windows”","authors":"İmdat Kara,&nbsp;Gözde Önder Uzun","doi":"10.1016/j.disopt.2025.100888","DOIUrl":"10.1016/j.disopt.2025.100888","url":null,"abstract":"<div><div>In this paper, we show that, the formulation given in a recent paper [1] for the travelling salesman problem with time windows (TSPTW), may not find the optimal solution and then we recommend to add a new constraint to the model.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"56 ","pages":"Article 100888"},"PeriodicalIF":0.9,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143748273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trimming of finite subsets of the Manhattan plane
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-01 DOI: 10.1016/j.disopt.2025.100880
Gökçe Çakmak , Ali Deniz , Şahin Koçak
V. Turaev defined recently an operation of “Trimming” for pseudo-metric spaces and analyzed the tight span of (pseudo-)metric spaces via this process. In this work we investigate the trimming of finite subspaces of the Manhattan plane. We show that this operation amounts for them to taking the metric center set and we give an algorithm to construct the tight spans via trimming.
{"title":"Trimming of finite subsets of the Manhattan plane","authors":"Gökçe Çakmak ,&nbsp;Ali Deniz ,&nbsp;Şahin Koçak","doi":"10.1016/j.disopt.2025.100880","DOIUrl":"10.1016/j.disopt.2025.100880","url":null,"abstract":"<div><div>V. Turaev defined recently an operation of “Trimming” for pseudo-metric spaces and analyzed the tight span of (pseudo-)metric spaces via this process. In this work we investigate the trimming of finite subspaces of the Manhattan plane. We show that this operation amounts for them to taking the metric center set and we give an algorithm to construct the tight spans via trimming.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"56 ","pages":"Article 100880"},"PeriodicalIF":0.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-02-01 DOI: 10.1016/j.disopt.2024.100877
Yasemin Büyükçolak
Given a graph G=(V,E), a vertex uV ve-dominates all edges incident to any vertex in the closed neighborhood N[u]. A subset DV is a vertex-edge dominating set if, for each edge eE, there exists a vertex uD such that u ve-dominates e. The objective of the ve-domination problem is to find a minimum cardinality ve-dominating set in G. In this paper, we present a linear time algorithm to find a minimum cardinality ve-dominating set for convex bipartite graphs, which is a superclass of bipartite permutation graphs and a subclass of bipartite graphs, where the ve-domination problem is solvable in linear time and NP-complete, respectively. We also establish the relationship γve=ive for convex bipartite graphs. Our approach leverages a chain decomposition of convex bipartite graphs, allowing for efficient identification of minimum ve-dominating sets and extending algorithmic insights into ve-domination for specific structured graph classes.
{"title":"Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs","authors":"Yasemin Büyükçolak","doi":"10.1016/j.disopt.2024.100877","DOIUrl":"10.1016/j.disopt.2024.100877","url":null,"abstract":"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, a vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span> <em>ve-dominates</em> all edges incident to any vertex in the closed neighborhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow></mrow></math></span>. A subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is <em>a vertex-edge dominating set</em> if, for each edge <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi></mrow></math></span>, there exists a vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>D</mi></mrow></math></span> such that <span><math><mi>u</mi></math></span> ve-dominates <span><math><mi>e</mi></math></span>. The objective of the <em>ve-domination problem</em> is to find a minimum cardinality ve-dominating set in <span><math><mi>G</mi></math></span>. In this paper, we present a linear time algorithm to find a minimum cardinality ve-dominating set for convex bipartite graphs, which is a superclass of bipartite permutation graphs and a subclass of bipartite graphs, where the ve-domination problem is solvable in linear time and NP-complete, respectively. We also establish the relationship <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>v</mi><mi>e</mi></mrow></msub><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>v</mi><mi>e</mi></mrow></msub></mrow></math></span> for convex bipartite graphs. Our approach leverages a chain decomposition of convex bipartite graphs, allowing for efficient identification of minimum ve-dominating sets and extending algorithmic insights into ve-domination for specific structured graph classes.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100877"},"PeriodicalIF":0.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143178624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving hard bi-objective knapsack problems using deep reinforcement learning
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-02-01 DOI: 10.1016/j.disopt.2025.100879
Hadi Charkhgard , Hanieh Rastegar Moghaddam , Ali Eshragh , Sasan Mahmoudinazlou , Kimia Keshanian
We study a class of bi-objective integer programs known as bi-objective knapsack problems (BOKPs). Our research focuses on the development of innovative exact and approximate solution methods for BOKPs by synergizing algorithmic concepts from two distinct domains: multi-objective integer programming and (deep) reinforcement learning. While novel reinforcement learning techniques have been applied successfully to single-objective integer programming in recent years, a corresponding body of work is yet to be explored in the field of multi-objective integer programming. This study is an effort to bridge this existing gap in the literature. Through a computational study, we demonstrate that although it is feasible to develop exact reinforcement learning-based methods for solving BOKPs, they come with significant computational costs. Consequently, we recommend an alternative research direction: approximating the entire nondominated frontier using deep reinforcement learning-based methods. We introduce two such methods, which extend classical methods from the multi-objective integer programming literature, and illustrate their ability to rapidly produce high-quality approximations.
{"title":"Solving hard bi-objective knapsack problems using deep reinforcement learning","authors":"Hadi Charkhgard ,&nbsp;Hanieh Rastegar Moghaddam ,&nbsp;Ali Eshragh ,&nbsp;Sasan Mahmoudinazlou ,&nbsp;Kimia Keshanian","doi":"10.1016/j.disopt.2025.100879","DOIUrl":"10.1016/j.disopt.2025.100879","url":null,"abstract":"<div><div>We study a class of bi-objective integer programs known as bi-objective knapsack problems (BOKPs). Our research focuses on the development of innovative exact and approximate solution methods for BOKPs by synergizing algorithmic concepts from two distinct domains: multi-objective integer programming and (deep) reinforcement learning. While novel reinforcement learning techniques have been applied successfully to single-objective integer programming in recent years, a corresponding body of work is yet to be explored in the field of multi-objective integer programming. This study is an effort to bridge this existing gap in the literature. Through a computational study, we demonstrate that although it is feasible to develop exact reinforcement learning-based methods for solving BOKPs, they come with significant computational costs. Consequently, we recommend an alternative research direction: approximating the entire nondominated frontier using deep reinforcement learning-based methods. We introduce two such methods, which extend classical methods from the multi-objective integer programming literature, and illustrate their ability to rapidly produce high-quality approximations.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100879"},"PeriodicalIF":0.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “A polyhedral study of lifted multicuts” [Discrete Optim. 47 (2023) 100757]
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-02-01 DOI: 10.1016/j.disopt.2024.100876
Bjoern Andres , Silvia Di Gregorio , Jannik Irmai , Jan-Hendrik Lange
{"title":"Corrigendum to “A polyhedral study of lifted multicuts” [Discrete Optim. 47 (2023) 100757]","authors":"Bjoern Andres ,&nbsp;Silvia Di Gregorio ,&nbsp;Jannik Irmai ,&nbsp;Jan-Hendrik Lange","doi":"10.1016/j.disopt.2024.100876","DOIUrl":"10.1016/j.disopt.2024.100876","url":null,"abstract":"","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100876"},"PeriodicalIF":0.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143177281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integer points in the degree-sequence polytope
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-02-01 DOI: 10.1016/j.disopt.2024.100867
Eleonore Bach , Friedrich Eisenbrand , Rom Pinchasi
An integer vector bZd is a degree sequence if there exists a hypergraph with vertices {1,,d} such that each bi is the number of hyperedges containing i. The degree-sequence polytope Zd is the convex hull of all degree sequences. We show that all but a 2Ω(d) fraction of integer vectors in the degree sequence polytope are degree sequences. Furthermore, the corresponding hypergraph of these points can be computed in time 2O(d) via linear programming techniques. This is substantially faster than the 2O(d2) running time of the current-best algorithm for the degree-sequence problem. We also show that for d98, Zd contains integer points that are not degree sequences. Furthermore, we prove that both the degree sequence problem itself and the linear optimization problem over Zd are NP-hard. The latter complements a recent result of Deza et al. (2018) who provide an algorithm that is polynomial in d and the number of hyperedges.
{"title":"Integer points in the degree-sequence polytope","authors":"Eleonore Bach ,&nbsp;Friedrich Eisenbrand ,&nbsp;Rom Pinchasi","doi":"10.1016/j.disopt.2024.100867","DOIUrl":"10.1016/j.disopt.2024.100867","url":null,"abstract":"<div><div>An integer vector <span><math><mrow><mi>b</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> is a <em>degree sequence</em> if there exists a hypergraph with vertices <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></mrow></math></span> such that each <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the number of hyperedges containing <span><math><mi>i</mi></math></span>. The <em>degree-sequence polytope</em> <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is the convex hull of all degree sequences. We show that all but a <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>Ω</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msup></math></span> fraction of integer vectors in the degree sequence polytope are degree sequences. Furthermore, the corresponding hypergraph of these points can be computed in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msup></math></span> via linear programming techniques. This is substantially faster than the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> running time of the current-best algorithm for the degree-sequence problem. We also show that for <span><math><mrow><mi>d</mi><mo>⩾</mo><mn>98</mn></mrow></math></span>, <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> contains integer points that are not degree sequences. Furthermore, we prove that both the degree sequence problem itself and the linear optimization problem over <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are <span><math><mi>NP</mi></math></span>-hard. The latter complements a recent result of Deza et al. (2018) who provide an algorithm that is polynomial in <span><math><mi>d</mi></math></span> and the number of hyperedges.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100867"},"PeriodicalIF":0.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143178625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform capacitated facility location with outliers/penalties
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-02-01 DOI: 10.1016/j.disopt.2025.100878
Rajni Dabas, Neelima Gupta
In this paper, we present a framework to design approximation algorithms for capacitated facility location problems with penalties/outliers. We apply our framework to obtain first approximations for capacitated k-facility location problem with penalties (CkFLwP) and capacitated facility location problem with outliers (CFLwO), for hard uniform capacities. Our solutions incur slight violations in capacities, (1+ϵ) for the problems without cardinality(k) constraint and (2+ϵ) for the problems with the cardinality constraint. For the outlier variant, we also incur a small loss (1+ϵ) in outliers. To the best of our knowledge, no results are known for CFLwO and CkFLwP in the literature. For uniform facility opening cost, we get rid of violation in capacities for CFLwO. Our approach is based on LP rounding technique.
{"title":"Uniform capacitated facility location with outliers/penalties","authors":"Rajni Dabas,&nbsp;Neelima Gupta","doi":"10.1016/j.disopt.2025.100878","DOIUrl":"10.1016/j.disopt.2025.100878","url":null,"abstract":"<div><div>In this paper, we present a framework to design approximation algorithms for capacitated facility location problems with penalties/outliers. We apply our framework to obtain first approximations for capacitated <span><math><mi>k</mi></math></span>-facility location problem with penalties (C<span><math><mi>k</mi></math></span>FLwP) and capacitated facility location problem with outliers (CFLwO), for hard uniform capacities. Our solutions incur slight violations in capacities, (<span><math><mrow><mn>1</mn><mo>+</mo><mi>ϵ</mi></mrow></math></span>) for the problems without cardinality(<span><math><mi>k</mi></math></span>) constraint and (<span><math><mrow><mn>2</mn><mo>+</mo><mi>ϵ</mi></mrow></math></span>) for the problems with the cardinality constraint. For the outlier variant, we also incur a small loss (<span><math><mrow><mn>1</mn><mo>+</mo><mi>ϵ</mi></mrow></math></span>) in outliers. To the best of our knowledge, no results are known for CFLwO and C<span><math><mi>k</mi></math></span>FLwP in the literature. For uniform facility opening cost, we get rid of violation in capacities for CFLwO. Our approach is based on LP rounding technique.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100878"},"PeriodicalIF":0.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143177068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the pure fixed charge transportation problem
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-02-01 DOI: 10.1016/j.disopt.2024.100875
Pengfei Zhu , Guangting Chen , Yong Chen , An Zhang
The pure fixed charge transportation problem is a well-known variant of the classic transportation problem where the cost of sending goods from a source to a destination only equals a fixed charge, regardless of the flow quantity. The objective is to minimize the total cost of shipping available goods to meet the required demands. Hence, we first demonstrate that this problem is NP-hard even when there are only two destinations, and it is Strong NP-hard when the number of destinations is input. These two new complexity results are an important supplement to the previous complexity results of this problem. Then, we propose two simple but novel approximation algorithms with a constant worst-case ratio, which is proved using an integer convex optimization model. Although our approximation algorithm applies to a few destinations, to our knowledge, it is the first approximation algorithm to handle the pure fixed-charge transportation problem.
{"title":"On the pure fixed charge transportation problem","authors":"Pengfei Zhu ,&nbsp;Guangting Chen ,&nbsp;Yong Chen ,&nbsp;An Zhang","doi":"10.1016/j.disopt.2024.100875","DOIUrl":"10.1016/j.disopt.2024.100875","url":null,"abstract":"<div><div>The <em>pure fixed charge transportation problem</em> is a well-known variant of the classic transportation problem where the cost of sending goods from a source to a destination only equals a fixed charge, regardless of the flow quantity. The objective is to minimize the total cost of shipping available goods to meet the required demands. Hence, we first demonstrate that this problem is NP-hard even when there are only two destinations, and it is Strong NP-hard when the number of destinations is input. These two new complexity results are an important supplement to the previous complexity results of this problem. Then, we propose two simple but novel approximation algorithms with a constant worst-case ratio, which is proved using an integer convex optimization model. Although our approximation algorithm applies to a few destinations, to our knowledge, it is the first approximation algorithm to handle the pure fixed-charge transportation problem.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100875"},"PeriodicalIF":0.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143178626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A polynomial-time algorithm for conformable coloring on regular bipartite and subcubic graphs 正则二部图和次三次图上的合着色的多项式时间算法
IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-11-29 DOI: 10.1016/j.disopt.2024.100865
Luerbio Faria, Mauro Nigro, Diana Sasaki
In 1988, Chetwynd and Hilton observed that a (Δ+1)-total coloring induces a vertex coloring in the graph, they called it conformable. A (Δ+1)-vertex coloring of a graph G=(V,E) is called conformable if the number of color classes of parity different from that of |V| is at most the deficiency def(G)=vV(ΔdG(v)) of G, where dG(v) is the degree of a vertex v of V. In 1994, McDiarmid and Sánchez-Arroyo proved that deciding whether a graph G has (Δ+1)-total coloring is NP-complete even when G is k-regular bipartite with k3. However, the time-complexity of the problem of determining whether a graph admits a conformable coloring (Conformability problem) remains unknown. In this paper, we prove that Conformability problem is polynomial solvable for the class of k-regular bipartite and for the class of subcubic graphs.
在1988年,Chetwynd和Hilton观察到(Δ+1)-total着色在图中引起顶点着色,他们称之为顺应着色。图G=(V,E)的A (Δ+1)-顶点着色,如果与|V|的奇偶性不同的色类数最多等于G的缺陷def(G)=∑V∈V(Δ−dG(V)),其中dG(V)是V的顶点V的度。1994年,McDiarmid和Sánchez-Arroyo证明了判定图G是否具有(Δ+1)-全着色是np完全的,即使G是k≥3的k正则二部。然而,确定图是否允许符合着色问题(符合问题)的时间复杂度仍然是未知的。本文证明了k正则二部图和次三次图的一致性问题是多项式可解的。
{"title":"A polynomial-time algorithm for conformable coloring on regular bipartite and subcubic graphs","authors":"Luerbio Faria,&nbsp;Mauro Nigro,&nbsp;Diana Sasaki","doi":"10.1016/j.disopt.2024.100865","DOIUrl":"10.1016/j.disopt.2024.100865","url":null,"abstract":"<div><div>In 1988, Chetwynd and Hilton observed that a <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-total coloring induces a vertex coloring in the graph, they called it conformable. A <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-vertex coloring of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is called <em>conformable</em> if the number of color classes of parity different from that of <span><math><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></math></span> is at most the deficiency <span><math><mrow><mo>def</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>, where <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the degree of a vertex <span><math><mi>v</mi></math></span> of <span><math><mi>V</mi></math></span>. In 1994, McDiarmid and Sánchez-Arroyo proved that deciding whether a graph <span><math><mi>G</mi></math></span> has <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-total coloring is NP-complete even when <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span>-regular bipartite with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. However, the time-complexity of the problem of determining whether a graph admits a conformable coloring (<span>Conformability</span> problem) remains unknown. In this paper, we prove that <span>Conformability</span> problem is polynomial solvable for the class of <span><math><mi>k</mi></math></span>-regular bipartite and for the class of subcubic graphs.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100865"},"PeriodicalIF":0.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Optimization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1