A microwave cavity with low temperature coefficient for passive rubidium frequency standards

Xue-ren Huang, Baihua Xia, D. Zhong, Shaofeng An, Xi-wen Zhu, G. Mei
{"title":"A microwave cavity with low temperature coefficient for passive rubidium frequency standards","authors":"Xue-ren Huang, Baihua Xia, D. Zhong, Shaofeng An, Xi-wen Zhu, G. Mei","doi":"10.1109/FREQ.2001.956170","DOIUrl":null,"url":null,"abstract":"Cavity pulling effect has been fully considered in designing of various atomic frequency standards, but quite often it has been neglected for passive rubidium atomic frequency standards (RAFS). This situation may be acceptable for the commonly used RAFS but it is less so for high performance one. A new type of microwave cavity with low temperature coefficient (TC) was designed with coefficient of 28.2 kHz//spl deg/C, which is positive and nearly one order smaller than that of the traditional TE/sub 111/ cavity. Analyses show that the cavity pulling effect of the cavity can be neglected under reasonable temperature stabilization condition. The main cause of the small TC of the cavity was discussed, which is due to the compensation of the positive TC of the dielectric ring in the cavity to the negative TC of the metal part of the cavity.","PeriodicalId":369101,"journal":{"name":"Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2001.956170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cavity pulling effect has been fully considered in designing of various atomic frequency standards, but quite often it has been neglected for passive rubidium atomic frequency standards (RAFS). This situation may be acceptable for the commonly used RAFS but it is less so for high performance one. A new type of microwave cavity with low temperature coefficient (TC) was designed with coefficient of 28.2 kHz//spl deg/C, which is positive and nearly one order smaller than that of the traditional TE/sub 111/ cavity. Analyses show that the cavity pulling effect of the cavity can be neglected under reasonable temperature stabilization condition. The main cause of the small TC of the cavity was discussed, which is due to the compensation of the positive TC of the dielectric ring in the cavity to the negative TC of the metal part of the cavity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无源铷频标低温系数微波腔
在各种原子频率标准的设计中都充分考虑了空腔拉效应,但在被动铷原子频率标准设计中往往忽略了空腔拉效应。这种情况对于常用的raf来说是可以接受的,但是对于高性能的raf来说就不那么容易接受了。设计了一种新型的低温系数(TC)微波腔,其温度系数为28.2 kHz//spl度/C,比传统的TE/sub 111/腔低近一个数量级。分析表明,在合理的温度稳定条件下,可以忽略空腔的拉拔效应。讨论了腔体TC小的主要原因,认为是由于腔体中介电环的正TC对腔体金属部分的负TC进行了补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of flicker phase modulation and amplitude modulation noise in field effect transistor amplifiers Direct bonded quartz resonators High-temperature acoustic loss in. AT-cut, BT-cut and SC-cut quartz resonators A 2.5 ppm fully integrated CMOS analog TCXO Engineering time: inventing the quartz wristwatch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1