Time Majority Voting, a PC-based EEG Classifier for Non-expert Users

Guangyao Dou, Zheng Zhou, Xiaodong Qu
{"title":"Time Majority Voting, a PC-based EEG Classifier for Non-expert Users","authors":"Guangyao Dou, Zheng Zhou, Xiaodong Qu","doi":"10.48550/arXiv.2207.12662","DOIUrl":null,"url":null,"abstract":". Using Machine Learning and Deep Learning to predict cognitive tasks from electroencephalography (EEG) signals is a rapidly advanc-ing field in Brain-Computer Interfaces (BCI). In contrast to the fields of computer vision and natural language processing, the data amount of these trials is still rather tiny. Developing a PC-based machine learning technique to increase the participation of non-expert end-users could help solve this data collection issue. We created a novel algorithm for machine learning called Time Majority Voting (TMV). In our experiment, TMV performed better than cutting-edge algorithms. It can operate efficiently on personal computers for classification tasks involving the BCI. These interpretable data also assisted end-users and researchers in comprehending EEG tests better.","PeriodicalId":129626,"journal":{"name":"Interacción","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interacción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.12662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. Using Machine Learning and Deep Learning to predict cognitive tasks from electroencephalography (EEG) signals is a rapidly advanc-ing field in Brain-Computer Interfaces (BCI). In contrast to the fields of computer vision and natural language processing, the data amount of these trials is still rather tiny. Developing a PC-based machine learning technique to increase the participation of non-expert end-users could help solve this data collection issue. We created a novel algorithm for machine learning called Time Majority Voting (TMV). In our experiment, TMV performed better than cutting-edge algorithms. It can operate efficiently on personal computers for classification tasks involving the BCI. These interpretable data also assisted end-users and researchers in comprehending EEG tests better.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间多数投票的非专家用户脑电分类器
. 利用机器学习和深度学习从脑电图(EEG)信号中预测认知任务是脑机接口(BCI)中一个快速发展的领域。与计算机视觉和自然语言处理领域相比,这些试验的数据量仍然相当小。开发一种基于pc的机器学习技术来增加非专业最终用户的参与,可以帮助解决这个数据收集问题。我们为机器学习创造了一种新的算法,叫做时间多数投票(TMV)。在我们的实验中,TMV比尖端算法表现得更好。它可以在个人计算机上有效地执行涉及脑机接口的分类任务。这些可解释的数据也有助于最终用户和研究人员更好地理解脑电图测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Thousand Faces of Explainable AI Along the Machine Learning Life Cycle: Industrial Reality and Current State of Research Tell Me, What Are You Most Afraid Of? Exploring the Effects of Agent Representation on Information Disclosure in Human-Chatbot Interaction Modular 3D Interface Design for Accessible VR Applications A new perspective on the prediction of the innovation performance: A data driven methodology to identify innovation indicators through a comparative study of Boston's neighborhoods Two Heads are Better than One: A Bio-inspired Method for Improving Classification on EEG-ET Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1