A new perspective on the prediction of the innovation performance: A data driven methodology to identify innovation indicators through a comparative study of Boston's neighborhoods
{"title":"A new perspective on the prediction of the innovation performance: A data driven methodology to identify innovation indicators through a comparative study of Boston's neighborhoods","authors":"E. Oikonomaki, Dimitris Belivanis","doi":"10.48550/arXiv.2304.06039","DOIUrl":null,"url":null,"abstract":"In an era of knowledge-based economy, commercialized research and globalized competition for talent, the creation of innovation ecosystems and innovation networks is at the forefront of efforts of cities. In this context, public authorities, private organizations, and academics respond to the question of the most promising indicators that can predict innovation with various innovation scoreboards. The current paper aims at increasing the understanding of the existing indicators and complementing the various innovation assessment toolkits, using large datasets from non-traditional sources. The success of both top down implemented innovation districts and community-level innovation ecosystems is complex and has not been well examined. Yet, limited data shed light on the association between indicators and innovation performance at the neighborhood level. For this purpose, the city of Boston has been selected as a case study to reveal the importance of its neighborhood's different characteristics in achieving high innovation performance. The study uses a large geographically distributed dataset across Boston's 35 zip code areas, which contains various business, entrepreneurial-specific, socio-economic data and other types of data that can reveal contextual urban dimensions. Furthermore, in order to express the innovation performance of the zip code areas, new metrics are proposed connected to innovation locations. The outcomes of this analysis aim to introduce a 'Neighborhood Innovation Index' that will generate new planning models for higher innovation performance, which can be easily applied in other cases. By publishing this large-scale dataset of urban informatics, the goal is to contribute to the innovation discourse and enable a new theoretical framework that identifies the linkages among cities' socio-economic characteristics and innovation performance.","PeriodicalId":129626,"journal":{"name":"Interacción","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interacción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.06039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In an era of knowledge-based economy, commercialized research and globalized competition for talent, the creation of innovation ecosystems and innovation networks is at the forefront of efforts of cities. In this context, public authorities, private organizations, and academics respond to the question of the most promising indicators that can predict innovation with various innovation scoreboards. The current paper aims at increasing the understanding of the existing indicators and complementing the various innovation assessment toolkits, using large datasets from non-traditional sources. The success of both top down implemented innovation districts and community-level innovation ecosystems is complex and has not been well examined. Yet, limited data shed light on the association between indicators and innovation performance at the neighborhood level. For this purpose, the city of Boston has been selected as a case study to reveal the importance of its neighborhood's different characteristics in achieving high innovation performance. The study uses a large geographically distributed dataset across Boston's 35 zip code areas, which contains various business, entrepreneurial-specific, socio-economic data and other types of data that can reveal contextual urban dimensions. Furthermore, in order to express the innovation performance of the zip code areas, new metrics are proposed connected to innovation locations. The outcomes of this analysis aim to introduce a 'Neighborhood Innovation Index' that will generate new planning models for higher innovation performance, which can be easily applied in other cases. By publishing this large-scale dataset of urban informatics, the goal is to contribute to the innovation discourse and enable a new theoretical framework that identifies the linkages among cities' socio-economic characteristics and innovation performance.