An Embarrassingly Simple Approach to Discrete Supervised Hashing

Shuguang Zhao, Bingzhi Chen, Zheng Zhang, Guangming Lu
{"title":"An Embarrassingly Simple Approach to Discrete Supervised Hashing","authors":"Shuguang Zhao, Bingzhi Chen, Zheng Zhang, Guangming Lu","doi":"10.1145/3469877.3493595","DOIUrl":null,"url":null,"abstract":"Prior hashing works typically learn a projection function from high-dimensional visual feature space to low-dimensional latent space. However, such a projection function remains several crucial bottlenecks: 1) information loss and coding redundancy are inevitable; 2) the available information of semantic labels is not well-explored; 3) the learned latent embedding lacks explicit semantic meaning. To overcome these limitations, we propose a novel supervised Discrete Auto-Encoder Hashing (DAEH) framework, in which a linear auto-encoder can effectively project the semantic labels of images into a latent representation space. Instead of using the visual feature projection, the proposed DAEH framework skillfully explores the semantic information of supervised labels to refine the latent feature embedding and further optimizes hashing function. Meanwhile, we reformulate the objective and relax the discrete constraints for the binary optimization problem. Extensive experiments on Caltech-256, CIFAR-10, and MNIST datasets demonstrate that our method can outperform the state-of-the-art hashing baselines.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3493595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Prior hashing works typically learn a projection function from high-dimensional visual feature space to low-dimensional latent space. However, such a projection function remains several crucial bottlenecks: 1) information loss and coding redundancy are inevitable; 2) the available information of semantic labels is not well-explored; 3) the learned latent embedding lacks explicit semantic meaning. To overcome these limitations, we propose a novel supervised Discrete Auto-Encoder Hashing (DAEH) framework, in which a linear auto-encoder can effectively project the semantic labels of images into a latent representation space. Instead of using the visual feature projection, the proposed DAEH framework skillfully explores the semantic information of supervised labels to refine the latent feature embedding and further optimizes hashing function. Meanwhile, we reformulate the objective and relax the discrete constraints for the binary optimization problem. Extensive experiments on Caltech-256, CIFAR-10, and MNIST datasets demonstrate that our method can outperform the state-of-the-art hashing baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散监督哈希的一种令人尴尬的简单方法
先前的哈希算法通常学习一个从高维视觉特征空间到低维潜在空间的投影函数。然而,这种投影函数仍然存在几个关键的瓶颈:1)信息丢失和编码冗余是不可避免的;2)语义标签的可用信息挖掘不够充分;3)学习到的潜在嵌入缺乏明确的语义。为了克服这些限制,我们提出了一种新的监督离散自编码器哈希(DAEH)框架,其中线性自编码器可以有效地将图像的语义标签投影到潜在表示空间中。本文提出的DAEH框架不是使用视觉特征投影,而是巧妙地挖掘监督标签的语义信息,以细化潜在特征嵌入,并进一步优化哈希函数。同时,我们对二元优化问题的目标进行了重新表述,并放宽了离散约束。在Caltech-256、CIFAR-10和MNIST数据集上进行的大量实验表明,我们的方法可以优于最先进的散列基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1