{"title":"Sensitivity enhancement by carbon nanotubes: Applications to stem cell cultures monitoring","authors":"C. Boero, S. Carrara, G. De Micheli","doi":"10.1109/RME.2009.5201362","DOIUrl":null,"url":null,"abstract":"Nano-biosensing provides new tools to investigate cellular differentiation and proliferation. Upon the various metabolic compounds secreted by cells during life cycles, glucose, lactate and hydrogen peroxide (H2O2) are of first interest. Nanostructured electrodes may enhance the compounds sensitivity in order to precisely detect cell cycle variation. In the present paper, the detection with electrodes nanostructured by using Multi- Walled Carbon Nanotubes (MWCNT) was investigated in order to develop an amperometric biosensor. Good improvement in sensitivity was obtained, suggesting that carbon nanotubes can be the right candidates to improve biosensing. The final aim of the study is the development of a bio-chip, which can be integrated in Petri dishes for automatic stem cell culture monitoring.","PeriodicalId":245992,"journal":{"name":"2009 Ph.D. Research in Microelectronics and Electronics","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ph.D. Research in Microelectronics and Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RME.2009.5201362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Nano-biosensing provides new tools to investigate cellular differentiation and proliferation. Upon the various metabolic compounds secreted by cells during life cycles, glucose, lactate and hydrogen peroxide (H2O2) are of first interest. Nanostructured electrodes may enhance the compounds sensitivity in order to precisely detect cell cycle variation. In the present paper, the detection with electrodes nanostructured by using Multi- Walled Carbon Nanotubes (MWCNT) was investigated in order to develop an amperometric biosensor. Good improvement in sensitivity was obtained, suggesting that carbon nanotubes can be the right candidates to improve biosensing. The final aim of the study is the development of a bio-chip, which can be integrated in Petri dishes for automatic stem cell culture monitoring.