Image Classification Based On Pcanet And Salient Feature Fusion

Yanfei Chen, Yuliang Huang, Zhangchen Yan, G. Wang, Tiange Huang, Jinhu Hu
{"title":"Image Classification Based On Pcanet And Salient Feature Fusion","authors":"Yanfei Chen, Yuliang Huang, Zhangchen Yan, G. Wang, Tiange Huang, Jinhu Hu","doi":"10.1109/AICIT55386.2022.9930220","DOIUrl":null,"url":null,"abstract":"Aiming at the shortcomings of traditional image classification model in extracting features, we propose an improved color contrast algorithm to extract higher quality saliency map. We first analyze the feature extraction ability of HC saliency algorithm in image classification and improve it by adding the location information, then we propose a novel features fusion module to combine the saliency map with the output features from PCANet to enhance the feature expression, contributing to classification capability of the model. The accuracy on Caltech101 and Pascal VOC2007 can achieve excellent performance by using our method.","PeriodicalId":231070,"journal":{"name":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICIT55386.2022.9930220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the shortcomings of traditional image classification model in extracting features, we propose an improved color contrast algorithm to extract higher quality saliency map. We first analyze the feature extraction ability of HC saliency algorithm in image classification and improve it by adding the location information, then we propose a novel features fusion module to combine the saliency map with the output features from PCANet to enhance the feature expression, contributing to classification capability of the model. The accuracy on Caltech101 and Pascal VOC2007 can achieve excellent performance by using our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Pcanet和显著特征融合的图像分类
针对传统图像分类模型在提取特征方面的不足,提出了一种改进的颜色对比算法,以提取更高质量的显著性图。首先分析了HC显著性算法在图像分类中的特征提取能力,并通过加入位置信息对其进行改进,然后提出了一种新的特征融合模块,将显著性图与PCANet输出的特征相结合,增强特征表达,提高了模型的分类能力。在Caltech101和Pascal VOC2007上使用我们的方法可以取得很好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maritime Object Detection based on YOLOx for Aviation Image STATCOM compensation and control strategy of star cascade H-bridge under unbalanced conditions Detection and Recognition of Road Information and Lanes Based on Deep Learning Event Extraction for Military Target Motion in Open-source Military News A Similarity Measurement Algorithm for Spacecraft Telemetry Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1