Fuzzy Logic Approximation and Deep Learning Neural Network for Fish Concentration Maps

J. Mäkiö, D. Glukhov, R. Bohush, T. Hlukhava, I. Zakharava
{"title":"Fuzzy Logic Approximation and Deep Learning Neural Network for Fish Concentration Maps","authors":"J. Mäkiö, D. Glukhov, R. Bohush, T. Hlukhava, I. Zakharava","doi":"10.2991/icdtli-19.2019.84","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm to obtain topographic maps of lakes, maps of fish concentration and a map of predator location based on the results of an intelligent sonar data processing. The algorithm is based on the following steps: input frame separation into overlapping blocks, blocks-processing using convolutional neural networks (CNN) YOLO v2, and merging extracted bounding boxes around one object. To construct maps of the distribution of features along the lake, we propose a novel method for constructing the approximation of GPSreferenced CNN results based on the original implementation of fuzzy logic. Keywords— sonar data; fish concentration; maps of lakes; fuzzy logic; convolutional neural networks","PeriodicalId":377233,"journal":{"name":"Proceedings of the International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019)","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/icdtli-19.2019.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an algorithm to obtain topographic maps of lakes, maps of fish concentration and a map of predator location based on the results of an intelligent sonar data processing. The algorithm is based on the following steps: input frame separation into overlapping blocks, blocks-processing using convolutional neural networks (CNN) YOLO v2, and merging extracted bounding boxes around one object. To construct maps of the distribution of features along the lake, we propose a novel method for constructing the approximation of GPSreferenced CNN results based on the original implementation of fuzzy logic. Keywords— sonar data; fish concentration; maps of lakes; fuzzy logic; convolutional neural networks
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鱼类浓度图的模糊逻辑逼近和深度学习神经网络
本文提出了一种基于智能声纳数据处理结果获取湖泊地形图、鱼类密集度图和捕食者位置图的算法。该算法基于以下步骤:将输入帧分离为重叠块,使用卷积神经网络(CNN) YOLO v2进行块处理,并合并提取的围绕一个对象的边界框。为了构建沿湖特征分布图,我们在原有模糊逻辑实现的基础上,提出了一种构造gps参考CNN结果近似的新方法。关键词:声纳数据;鱼浓度;湖泊地图;模糊逻辑;卷积神经网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Balanced Scorecard for the Digital Transformation of Global Container Shipping Lines The Processes of the Formation of a Gifted Person in Distant Districts of the Arctic: the Digital Age Creating value for Small and Medium Enterprises with the logistic applications of blockchain Mathematical modeling in economics for company logistics costs management in the context of additive technologies application Contemporary condition and development prospects of international logistics in the post-sanction period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1