Sagar Kavaiya, Dhaval K. Patel, Y. Guan, Sumei Sun, Yoong Choon Chang, J. Lim
{"title":"On Physical Layer Security over α - η -κ -μ Fading for Relay based Vehicular Networks","authors":"Sagar Kavaiya, Dhaval K. Patel, Y. Guan, Sumei Sun, Yoong Choon Chang, J. Lim","doi":"10.1109/SPCOM50965.2020.9179522","DOIUrl":null,"url":null,"abstract":"In this paper, we study the secrecy problem for a relay-based vehicular network. We assume that the legitimate transmitter, legitimate receiver, and eavesdropper are equipped with a single antenna. By considering various initial positions of the relay, we obtain the statistical knowledge of the received signal-to-noise ratio over $\\alpha - \\eta - k - \\mu$ fading channel under vehicle mobility. Further, we derive an exact closed form expression for outage probability and secrecy outage probability utilizing the amplify-and-forward relay protocol for a two-lane high way scenario. Monte-Carlo simulations are performed to validate the accuracy of the derived analytical expressions.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we study the secrecy problem for a relay-based vehicular network. We assume that the legitimate transmitter, legitimate receiver, and eavesdropper are equipped with a single antenna. By considering various initial positions of the relay, we obtain the statistical knowledge of the received signal-to-noise ratio over $\alpha - \eta - k - \mu$ fading channel under vehicle mobility. Further, we derive an exact closed form expression for outage probability and secrecy outage probability utilizing the amplify-and-forward relay protocol for a two-lane high way scenario. Monte-Carlo simulations are performed to validate the accuracy of the derived analytical expressions.