No PANE, No Gain

Renchi Yang, Jieming Shi, X. Xiao, Yin Yang, S. Bhowmick, Juncheng Liu
{"title":"No PANE, No Gain","authors":"Renchi Yang, Jieming Shi, X. Xiao, Yin Yang, S. Bhowmick, Juncheng Liu","doi":"10.1145/3542700.3542711","DOIUrl":null,"url":null,"abstract":"Given a graph G where each node is associated with a set of attributes, attributed network embedding (ANE) maps each node v 2 G to a compact vector Xv, which can be used in downstream machine learning tasks in a variety of applications. Existing ANE solutions do not scale to massive graphs due to prohibitive computation costs or generation of low-quality embeddings. This paper proposes PANE, an effective and scalable approach to ANE computation for massive graphs in a single server that achieves state-of-the-art result quality on multiple benchmark datasets for two common prediction tasks: link prediction and node classification. Under the hood, PANE takes inspiration from well-established data management techniques to scale up ANE in a single server. Specifically, it exploits a carefully formulated problem based on a novel random walk model, a highly efficient solver, and non-trivial parallelization by utilizing modern multi-core CPUs. Extensive experiments demonstrate that PANE consistently outperforms all existing methods in terms of result quality, while being orders of magnitude faster.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3542700.3542711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Given a graph G where each node is associated with a set of attributes, attributed network embedding (ANE) maps each node v 2 G to a compact vector Xv, which can be used in downstream machine learning tasks in a variety of applications. Existing ANE solutions do not scale to massive graphs due to prohibitive computation costs or generation of low-quality embeddings. This paper proposes PANE, an effective and scalable approach to ANE computation for massive graphs in a single server that achieves state-of-the-art result quality on multiple benchmark datasets for two common prediction tasks: link prediction and node classification. Under the hood, PANE takes inspiration from well-established data management techniques to scale up ANE in a single server. Specifically, it exploits a carefully formulated problem based on a novel random walk model, a highly efficient solver, and non-trivial parallelization by utilizing modern multi-core CPUs. Extensive experiments demonstrate that PANE consistently outperforms all existing methods in terms of result quality, while being orders of magnitude faster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不付出就没有收获
给定一个图G,其中每个节点与一组属性相关联,属性网络嵌入(ANE)将每个节点v2g映射到一个紧凑向量Xv,这可以用于各种应用中的下游机器学习任务。由于高昂的计算成本或生成低质量的嵌入,现有的ANE解决方案无法扩展到大量图形。本文提出了PANE,这是一种有效且可扩展的方法,用于在单个服务器上对大量图形进行ANE计算,可以在多个基准数据集上实现最先进的结果质量,用于两个常见的预测任务:链接预测和节点分类。在底层,PANE从完善的数据管理技术中获得灵感,在单个服务器中扩展ANE。具体来说,它利用了一个精心制定的问题,该问题基于一种新颖的随机行走模型,一个高效的求解器,并利用现代多核cpu进行非平凡的并行化。大量的实验表明,PANE在结果质量方面始终优于所有现有的方法,同时速度要快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1