Exploratory Analysis on Topic Modelling for Video Subtitles

Atmik Ajoy, Chethan U Mahindrakar, H. Mamatha
{"title":"Exploratory Analysis on Topic Modelling for Video Subtitles","authors":"Atmik Ajoy, Chethan U Mahindrakar, H. Mamatha","doi":"10.1145/3483845.3483878","DOIUrl":null,"url":null,"abstract":"In this paper, we explore different models available to perform topic modelling on subtitles files. Subtitle files are sourced from movies and represent the dialogue being spoken. Applying this to topic modelling would mean trying to obtain the topics regarding the video from only the subtitles. Our novel idea is to test whether it would be feasible to use topic modelling on subtitles to get topics of a movie. While topic modelling as an idea has been used previously in bio-informatics,patent indexing and much more, has not seen any application in this sphere. We extensively search for datasets, preprocess the subtitles files and try Latent Dirichlet Allocation, Hierarchical Dirichlet Processes and Latent Semantic Indexing methods of topic modelling on these documents. These are the top three prominent topic modelling models that are used today. Our results entail what model would work best for subtitle files","PeriodicalId":134636,"journal":{"name":"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3483845.3483878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore different models available to perform topic modelling on subtitles files. Subtitle files are sourced from movies and represent the dialogue being spoken. Applying this to topic modelling would mean trying to obtain the topics regarding the video from only the subtitles. Our novel idea is to test whether it would be feasible to use topic modelling on subtitles to get topics of a movie. While topic modelling as an idea has been used previously in bio-informatics,patent indexing and much more, has not seen any application in this sphere. We extensively search for datasets, preprocess the subtitles files and try Latent Dirichlet Allocation, Hierarchical Dirichlet Processes and Latent Semantic Indexing methods of topic modelling on these documents. These are the top three prominent topic modelling models that are used today. Our results entail what model would work best for subtitle files
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频字幕主题建模的探索性分析
在本文中,我们探索了不同的模型来对字幕文件进行主题建模。字幕文件来自电影,代表正在说话的对话。将此应用于主题建模将意味着试图仅从字幕中获取有关视频的主题。我们的新颖想法是测试在字幕上使用主题建模来获取电影主题是否可行。虽然主题建模作为一种思想已经在生物信息学、专利索引等领域得到了应用,但在这一领域还没有任何应用。我们广泛搜索数据集,对字幕文件进行预处理,并尝试对这些文档进行潜在狄利克雷分配、层次狄利克雷过程和潜在语义索引等主题建模方法。这是目前使用的三个最突出的主题建模模型。我们的结果确定了哪种模型最适合字幕文件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved non-autoregressive dialog state tracking model Dynamic characteristics analysis of a new variable stiffness robot joint Interactive Intention Prediction Model for Humanoid Robot Based on Visual Features A propelled multiple fusion Deep Belief Network for weld defects detection Detection of Fatigued Face
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1