VISION-KG: Topic-centric Visualization System for Summarizing Knowledge Graph

Jiaqi Wei, Shuo Han, Lei Zou
{"title":"VISION-KG: Topic-centric Visualization System for Summarizing Knowledge Graph","authors":"Jiaqi Wei, Shuo Han, Lei Zou","doi":"10.1145/3336191.3371863","DOIUrl":null,"url":null,"abstract":"Large scale knowledge graph (KG) has attracted wide attentions in both academia and industry recently. However, due to the complexity of SPARQL syntax and massive volume of real KG, it remains difficult for ordinary users to access KG. In this demo, we present VISION-KG, a topic-centric visualization system to help users navigate KG easily via entity summarization and entity clustering. Given a query entity v0, VISION-KG summarizes the induced subgraph of v0's neighbor nodes via our proposed facts ranking method that measures importance, relatedness and diversity. Moreover, to achieve conciseness, we split the summarized graph into several topic-centric summarized subgraph according to semantic and structural similarities among entities. We will demonstrate how VISION-KG provides a user-friendly visualization interface for navigating KG.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Large scale knowledge graph (KG) has attracted wide attentions in both academia and industry recently. However, due to the complexity of SPARQL syntax and massive volume of real KG, it remains difficult for ordinary users to access KG. In this demo, we present VISION-KG, a topic-centric visualization system to help users navigate KG easily via entity summarization and entity clustering. Given a query entity v0, VISION-KG summarizes the induced subgraph of v0's neighbor nodes via our proposed facts ranking method that measures importance, relatedness and diversity. Moreover, to achieve conciseness, we split the summarized graph into several topic-centric summarized subgraph according to semantic and structural similarities among entities. We will demonstrate how VISION-KG provides a user-friendly visualization interface for navigating KG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VISION-KG:以主题为中心的知识图谱可视化系统
近年来,大规模知识图谱(KG)受到了学术界和工业界的广泛关注。然而,由于SPARQL语法的复杂性和大量的实际KG,普通用户仍然很难访问KG。在本演示中,我们介绍了VISION-KG,这是一个以主题为中心的可视化系统,可帮助用户通过实体摘要和实体聚类轻松导航KG。给定一个查询实体v0, VISION-KG通过我们提出的衡量重要性、相关性和多样性的事实排序方法,总结v0邻居节点的诱导子图。此外,为了实现简洁性,我们根据实体之间的语义和结构相似性将摘要图划分为几个以主题为中心的摘要子图。我们将演示VISION-KG如何为导航KG提供一个用户友好的可视化界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1