Segmentation of gliomas in magnetic resonance images using recurrent neural networks

Stefan Grivalsky, Martin Tamajka, Wanda Benesova
{"title":"Segmentation of gliomas in magnetic resonance images using recurrent neural networks","authors":"Stefan Grivalsky, Martin Tamajka, Wanda Benesova","doi":"10.1109/TSP.2019.8769056","DOIUrl":null,"url":null,"abstract":"In our work we focus on automatic segmentation of high-grade gliomas (HGG) from magnetic resonance images (MRI). The results of segmentation have great impact on treatment of patients and consequently on the length of their life. In this paper a new approach of automatic glioma segmentation based on recurrent neural units is proposed. We use the Long Short-Term Memory units (LSTMs) which are able to extract latent features of brain structure by global contextual information. Unlike convolutional neural networks, where global context is gained by combination of local features, LSTMs have the potential to capture the global context at once. We use a region-based classification using the 3D Hilbert space-filling curve. To evaluate this method, the HGG data from the International Multimodal Brain Tumor Segmentation (BraTS-17) Challenge 2017 are being used. Our method achieved a dice score 0.62, 0.77, 0.64, on validation dataset of BraTS-17, for enhancing tumor, whole tumor and tumor core, respectively.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8769056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In our work we focus on automatic segmentation of high-grade gliomas (HGG) from magnetic resonance images (MRI). The results of segmentation have great impact on treatment of patients and consequently on the length of their life. In this paper a new approach of automatic glioma segmentation based on recurrent neural units is proposed. We use the Long Short-Term Memory units (LSTMs) which are able to extract latent features of brain structure by global contextual information. Unlike convolutional neural networks, where global context is gained by combination of local features, LSTMs have the potential to capture the global context at once. We use a region-based classification using the 3D Hilbert space-filling curve. To evaluate this method, the HGG data from the International Multimodal Brain Tumor Segmentation (BraTS-17) Challenge 2017 are being used. Our method achieved a dice score 0.62, 0.77, 0.64, on validation dataset of BraTS-17, for enhancing tumor, whole tumor and tumor core, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁共振图像中胶质瘤的递归神经网络分割
在我们的工作中,我们专注于从磁共振图像(MRI)中自动分割高级别胶质瘤(HGG)。分割的结果对患者的治疗有很大的影响,从而影响患者的生命长度。提出了一种基于递归神经单元的神经胶质瘤自动分割方法。我们使用长短期记忆单元(LSTMs),它能够通过全局上下文信息提取大脑结构的潜在特征。与卷积神经网络不同,卷积神经网络通过结合局部特征获得全局上下文,lstm具有立即捕获全局上下文的潜力。我们使用基于区域的分类,使用3D希尔伯特空间填充曲线。为了评估这种方法,正在使用2017年国际多模式脑肿瘤分割(BraTS-17)挑战的HGG数据。我们的方法在BraTS-17验证数据集上对肿瘤、整个肿瘤和肿瘤核心的增强分别获得了0.62、0.77和0.64的骰子得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement of Beat Tracking in String Quartet Music Analysis Based on the Teager-Kaiser Energy Operator Smart Speaker: Suspicious Event Detection with Reverse Mode Speakers Supervised Learning in Multi-Agent Environments Using Inverse Point of View Evaluation of Layer 3 Multipath Solutions using Container Technologies Detecting Cluster Synchronization in Chaotic Dynamic Networks via Information Theoretic Measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1