A non-generational genetic algorithm for multiobjective optimization

C. Borges, H. Barbosa
{"title":"A non-generational genetic algorithm for multiobjective optimization","authors":"C. Borges, H. Barbosa","doi":"10.1109/CEC.2000.870292","DOIUrl":null,"url":null,"abstract":"In this paper a non-generational genetic algorithm for multiobjective optimization problems is proposed. For each element in the population a domination count is defined together with a neighborhood density measure based on a sharing function. Those two measures are then nonlinearly combined in order to define the individual's fitness. Numerical experiments with four test-problems taken from the evolutionary multiobjective literature are performed and the results are compared with those obtained by other evolutionary techniques.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper a non-generational genetic algorithm for multiobjective optimization problems is proposed. For each element in the population a domination count is defined together with a neighborhood density measure based on a sharing function. Those two measures are then nonlinearly combined in order to define the individual's fitness. Numerical experiments with four test-problems taken from the evolutionary multiobjective literature are performed and the results are compared with those obtained by other evolutionary techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标优化的非代遗传算法
提出了一种求解多目标优化问题的非代遗传算法。对于种群中的每个元素,定义了一个统治计数和基于共享函数的邻域密度度量。然后将这两种测量方法非线性地结合起来,以定义个体的适应度。从进化多目标文献中选取了四个测试问题进行了数值实验,并与其他进化技术的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1