An adaptive variant of jSO with multiple crossover strategies employing Eigen transformation

Patrik Kolenovsky, P. Bujok
{"title":"An adaptive variant of jSO with multiple crossover strategies employing Eigen transformation","authors":"Patrik Kolenovsky, P. Bujok","doi":"10.1109/CEC55065.2022.9870378","DOIUrl":null,"url":null,"abstract":"In this paper, new strategy options are developed for the adaptive jSO algorithm. The proposed variant of jSO is based on the competition of a binomial and exponential crossover. Moreover, an Eigen transformation approach is employed in the selected crossover with a given probability. The proposed variant of jSO is applied to the CEC 2022 benchmark set, which contains 12 functions with dimensionality $D=10$, 20. The proposed algorithm found the optima values in seven problems out of 24. When comparing the new variant of jSO with the original jSO algorithm, nine functions were improved, where two of them significantly.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, new strategy options are developed for the adaptive jSO algorithm. The proposed variant of jSO is based on the competition of a binomial and exponential crossover. Moreover, an Eigen transformation approach is employed in the selected crossover with a given probability. The proposed variant of jSO is applied to the CEC 2022 benchmark set, which contains 12 functions with dimensionality $D=10$, 20. The proposed algorithm found the optima values in seven problems out of 24. When comparing the new variant of jSO with the original jSO algorithm, nine functions were improved, where two of them significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征变换的jSO多交叉策略自适应变体
本文为自适应jSO算法开发了新的策略选择。提出了一种基于二项交叉和指数交叉竞争的jSO算法。此外,对选择的具有给定概率的交叉点采用特征变换方法。提出的jSO变体应用于CEC 2022基准集,该基准集包含12个维度为$D=10$, 20的函数。提出的算法在24个问题中找到了7个最优值。将jSO的新变体与原始jSO算法进行比较,发现有9个函数得到了改进,其中有2个函数得到了显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1