A Novel Energy Storage System Based on Carbon Dioxide Unique Thermodynamic Properties

M. Astolfi, D. Rizzi, E. Macchi, C. Spadacini
{"title":"A Novel Energy Storage System Based on Carbon Dioxide Unique Thermodynamic Properties","authors":"M. Astolfi, D. Rizzi, E. Macchi, C. Spadacini","doi":"10.1115/gt2021-59487","DOIUrl":null,"url":null,"abstract":"\n This paper focuses on the thermodynamic performance and techno-economic assessment of a novel electrical energy storage technology using carbon dioxide as working fluid. This technology, named CO2 battery and recently patented by Energy Dome SpA., addresses to an energy market which has great need of energy storage solutions able to handle the increasing share of non-dispatchable renewable energy sources like photovoltaic and wind energy. After a brief introduction, the present study presents the concept of CO2 batteries and their operation. Then the detailed numerical model developed for the accurate calculation of system round trip efficiency is presented with the adopted assumptions and the optimization routine description. Results on the reference case and following sensitivity analysis confirm a RTE of around 77% (±2%) which makes CO2 batteries a very promising technology with respect to other energy storage systems based on thermodynamic cycles like compressed air and liquid air energy storage thanks to the high performance and the easiness of installation. Finally, calculation of system footprint, capital investment cost and levelized cost of storage are discussed.","PeriodicalId":169840,"journal":{"name":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper focuses on the thermodynamic performance and techno-economic assessment of a novel electrical energy storage technology using carbon dioxide as working fluid. This technology, named CO2 battery and recently patented by Energy Dome SpA., addresses to an energy market which has great need of energy storage solutions able to handle the increasing share of non-dispatchable renewable energy sources like photovoltaic and wind energy. After a brief introduction, the present study presents the concept of CO2 batteries and their operation. Then the detailed numerical model developed for the accurate calculation of system round trip efficiency is presented with the adopted assumptions and the optimization routine description. Results on the reference case and following sensitivity analysis confirm a RTE of around 77% (±2%) which makes CO2 batteries a very promising technology with respect to other energy storage systems based on thermodynamic cycles like compressed air and liquid air energy storage thanks to the high performance and the easiness of installation. Finally, calculation of system footprint, capital investment cost and levelized cost of storage are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二氧化碳独特热力学性质的新型储能系统
本文重点介绍了一种以二氧化碳为工质的新型储能技术的热力学性能和技术经济评价。这项技术被命名为二氧化碳电池,最近获得了Energy Dome SpA的专利。,解决了能源市场对储能解决方案的巨大需求,这些储能解决方案能够应对光伏和风能等不可调度可再生能源日益增长的份额。在简要介绍后,本研究介绍了二氧化碳电池的概念及其操作。然后给出了精确计算系统往返效率的详细数值模型,并给出了所采用的假设和优化程序描述。参考案例的结果和随后的灵敏度分析证实了RTE约为77%(±2%),这使得二氧化碳电池相对于其他基于热力学循环的储能系统(如压缩空气和液体空气储能)是一项非常有前途的技术,这要归功于其高性能和易于安装。最后讨论了系统占用空间、资本投资成本和平准化存储成本的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of Engine Operability and Overall Performance for Parallel Hybrid Electric Propulsion Systems for a Single-Aisle Aircraft Uncertainty in High-Pressure Stator Performance Measurement in an Annular Cascade at Engine-Representative Reynolds and Mach Critical and Choking Mach Numbers for Organic Vapor Flows Through Turbine Cascades Collaboration Between Academia and Industry to Advance Industrial Gas Turbines Hot-Wire Measurements in Non-Calibrated Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1