A bi-level structured classifier integrating unsupervised and supervised machine learning models

Yichen Liu, Zitong Zhang, Chunlei Zhang, Kaiwen Zhang
{"title":"A bi-level structured classifier integrating unsupervised and supervised machine learning models","authors":"Yichen Liu, Zitong Zhang, Chunlei Zhang, Kaiwen Zhang","doi":"10.1117/12.2667225","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a bi-level structured classifier integrating unsupervised and supervised machine learning models, which aims to improve the model's decision-making ability on classification boundaries by dividing the sample subspace to make full use of the multivariate attribute features and spatial structure of the data. The bi-level structured classifier utilizes the unsupervised clustering algorithms for subspace partitioning of sample data in the first layer, and selects the applicable supervised models to learn on the subspace samples in the second layer. We conduct a case study on a lithology dataset from the complex carbonate reservoirs for lithology identification. The classification results indicate that the bi-level integrated classifier (98.77%) is superior to the machine learning models (XGBoost: 97.67 %). And the ability of the bi-level integrated architecture is verified in effectiveness and generalization, and effectively improves the classification performance.","PeriodicalId":128051,"journal":{"name":"Third International Seminar on Artificial Intelligence, Networking, and Information Technology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Seminar on Artificial Intelligence, Networking, and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a bi-level structured classifier integrating unsupervised and supervised machine learning models, which aims to improve the model's decision-making ability on classification boundaries by dividing the sample subspace to make full use of the multivariate attribute features and spatial structure of the data. The bi-level structured classifier utilizes the unsupervised clustering algorithms for subspace partitioning of sample data in the first layer, and selects the applicable supervised models to learn on the subspace samples in the second layer. We conduct a case study on a lithology dataset from the complex carbonate reservoirs for lithology identification. The classification results indicate that the bi-level integrated classifier (98.77%) is superior to the machine learning models (XGBoost: 97.67 %). And the ability of the bi-level integrated architecture is verified in effectiveness and generalization, and effectively improves the classification performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成无监督和有监督机器学习模型的双层结构化分类器
本文提出了一种集成无监督和有监督机器学习模型的双层结构化分类器,通过划分样本子空间,充分利用数据的多元属性特征和空间结构,提高模型在分类边界上的决策能力。双层结构化分类器在第一层利用无监督聚类算法对样本数据进行子空间划分,在第二层选择适用的监督模型对子空间样本进行学习。我们对复杂碳酸盐岩储层的岩性数据集进行了案例研究,以进行岩性识别。分类结果表明,双层次集成分类器(98.77%)优于机器学习模型(XGBoost: 97.67%)。验证了双层集成体系结构的有效性和泛化能力,有效地提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the layout of electromagnetic radiation measurement points for explosion of energetic materials Deep learning captcha recognition for mobile based on TensorFlow Research on the design technology of mobile Mix-YOLOv5s model BMSAD: behavior feature and multi-scenario-based Sybil attack detection method in vehicular networks A lightweight model for encrypted traffic classification through sequence modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1