Study on feature selection and machine learning algorithms for Malay sentiment classification

A. Alsaffar, N. Omar
{"title":"Study on feature selection and machine learning algorithms for Malay sentiment classification","authors":"A. Alsaffar, N. Omar","doi":"10.1109/ICIMU.2014.7066643","DOIUrl":null,"url":null,"abstract":"Online social media is used to show the sentiments of different individuals about various subjects. Sentiment analysis or opinion mining has recently been considered as one of the highly dynamic research fields in natural language processing, Web mining, and machine learning. There has been a very limited amount of research that focuses on sentiment analysis in the Malay language. This study investigates how feature selection methods contribute to the improvement of Malay sentiment classification performance. Three supervised machine-learning classifiers and seven feature selection methods are used to conduct a series of experiments for the effective selection of the appropriate methods for the automatic sentiment classification of online Malay-written reviews. Findings show that the classifications of Malay sentiment improve using feature selections approaches. This work demonstrates that all feature reduction methods generally improve classifier performance. Support Vector Machine (SVM) approach provide the highest accuracy performance of features selection in order to classify Malay sentiment comparing with other classifications approaches such as PCA and CHI square. SVM records 87% as experimental accuracy result of feature selection.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Online social media is used to show the sentiments of different individuals about various subjects. Sentiment analysis or opinion mining has recently been considered as one of the highly dynamic research fields in natural language processing, Web mining, and machine learning. There has been a very limited amount of research that focuses on sentiment analysis in the Malay language. This study investigates how feature selection methods contribute to the improvement of Malay sentiment classification performance. Three supervised machine-learning classifiers and seven feature selection methods are used to conduct a series of experiments for the effective selection of the appropriate methods for the automatic sentiment classification of online Malay-written reviews. Findings show that the classifications of Malay sentiment improve using feature selections approaches. This work demonstrates that all feature reduction methods generally improve classifier performance. Support Vector Machine (SVM) approach provide the highest accuracy performance of features selection in order to classify Malay sentiment comparing with other classifications approaches such as PCA and CHI square. SVM records 87% as experimental accuracy result of feature selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马来语情感分类的特征选择与机器学习算法研究
在线社交媒体被用来表达不同个人对不同主题的看法。情感分析或观点挖掘最近被认为是自然语言处理、Web挖掘和机器学习中高度动态的研究领域之一。专注于马来语情感分析的研究非常有限。本研究探讨特征选择方法如何有助于马来语情绪分类性能的改善。利用3种监督式机器学习分类器和7种特征选择方法进行了一系列实验,为在线马来语评论的自动情感分类有效选择合适的方法。研究结果表明,使用特征选择方法可以改善马来人情绪的分类。这项工作表明,所有的特征约简方法通常都能提高分类器的性能。支持向量机(SVM)方法与PCA和x平方分布等其他分类方法相比,在马来语情感分类中提供了最高的特征选择精度。SVM的特征选择实验准确率为87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Table of content (TOC) A data mining approach to analysing airborne wood particulate concentration and atmospheric data Mobile platform for exploring the potential of volunteered geographic information for asset register Web-based learning tool for primary school student with dyscalculia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1