{"title":"Study on feature selection and machine learning algorithms for Malay sentiment classification","authors":"A. Alsaffar, N. Omar","doi":"10.1109/ICIMU.2014.7066643","DOIUrl":null,"url":null,"abstract":"Online social media is used to show the sentiments of different individuals about various subjects. Sentiment analysis or opinion mining has recently been considered as one of the highly dynamic research fields in natural language processing, Web mining, and machine learning. There has been a very limited amount of research that focuses on sentiment analysis in the Malay language. This study investigates how feature selection methods contribute to the improvement of Malay sentiment classification performance. Three supervised machine-learning classifiers and seven feature selection methods are used to conduct a series of experiments for the effective selection of the appropriate methods for the automatic sentiment classification of online Malay-written reviews. Findings show that the classifications of Malay sentiment improve using feature selections approaches. This work demonstrates that all feature reduction methods generally improve classifier performance. Support Vector Machine (SVM) approach provide the highest accuracy performance of features selection in order to classify Malay sentiment comparing with other classifications approaches such as PCA and CHI square. SVM records 87% as experimental accuracy result of feature selection.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Online social media is used to show the sentiments of different individuals about various subjects. Sentiment analysis or opinion mining has recently been considered as one of the highly dynamic research fields in natural language processing, Web mining, and machine learning. There has been a very limited amount of research that focuses on sentiment analysis in the Malay language. This study investigates how feature selection methods contribute to the improvement of Malay sentiment classification performance. Three supervised machine-learning classifiers and seven feature selection methods are used to conduct a series of experiments for the effective selection of the appropriate methods for the automatic sentiment classification of online Malay-written reviews. Findings show that the classifications of Malay sentiment improve using feature selections approaches. This work demonstrates that all feature reduction methods generally improve classifier performance. Support Vector Machine (SVM) approach provide the highest accuracy performance of features selection in order to classify Malay sentiment comparing with other classifications approaches such as PCA and CHI square. SVM records 87% as experimental accuracy result of feature selection.