Minimizing simultaneous switching noise at reduced power with constant-voltage power transmission lines for high-speed signaling

Satyanarayana Telikepalli, M. Swaminathan, D. Keezer
{"title":"Minimizing simultaneous switching noise at reduced power with constant-voltage power transmission lines for high-speed signaling","authors":"Satyanarayana Telikepalli, M. Swaminathan, D. Keezer","doi":"10.1109/ISQED.2013.6523689","DOIUrl":null,"url":null,"abstract":"Signal and power integrity are crucial for ensuring high performance in high speed digital systems. As the operating frequency of digital systems increases, the power and ground bounce created by simultaneous switching noise (SSN) has become a limiting factor for the performance of these devices. SSN is caused by parasitic inductance that exists in the power delivery network (PDN), and voltage fluctuations on the power and ground rails can lead to reduced noise margins and can limit the maximum frequency of a digital device. A new PDN design has been suggested that achieves significantly reduced SSN [1] by replacing the power plane structure with a power transmission line (PTL). In this paper, a new power delivery scheme called Constant Voltage Power Transmission Line (CV-PTL) is shown to significantly reduce switching noise while also lowering power consumption. This concept has been demonstrated through theory, simulation, and measurements.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Signal and power integrity are crucial for ensuring high performance in high speed digital systems. As the operating frequency of digital systems increases, the power and ground bounce created by simultaneous switching noise (SSN) has become a limiting factor for the performance of these devices. SSN is caused by parasitic inductance that exists in the power delivery network (PDN), and voltage fluctuations on the power and ground rails can lead to reduced noise margins and can limit the maximum frequency of a digital device. A new PDN design has been suggested that achieves significantly reduced SSN [1] by replacing the power plane structure with a power transmission line (PTL). In this paper, a new power delivery scheme called Constant Voltage Power Transmission Line (CV-PTL) is shown to significantly reduce switching noise while also lowering power consumption. This concept has been demonstrated through theory, simulation, and measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用恒压电力传输线在低功率下最大限度地减少高速信号的同时开关噪声
在高速数字系统中,信号和电源的完整性是保证高性能的关键。随着数字系统工作频率的提高,同时开关噪声(SSN)产生的功率和地弹跳已成为这些设备性能的限制因素。SSN是由电力输送网络(PDN)中存在的寄生电感引起的,电源和地轨上的电压波动会导致噪声裕度降低,并会限制数字设备的最大频率。已经提出了一种新的PDN设计,通过用输电线路(PTL)取代电源平面结构来显著降低SSN[1]。本文提出了一种新的电力传输方案,称为恒压输电线路(CV-PTL),它可以显著降低开关噪声,同时降低功耗。这个概念已经通过理论、模拟和测量得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1