Vehicle detection and tracking using Mean Shift segmentation on semi-dense disparity maps

S. Lefebvre, S. Ambellouis
{"title":"Vehicle detection and tracking using Mean Shift segmentation on semi-dense disparity maps","authors":"S. Lefebvre, S. Ambellouis","doi":"10.1109/IVS.2012.6232280","DOIUrl":null,"url":null,"abstract":"This paper describes an original joint obstacle detection and tracking method based on a Mean Shift algorithm and semi-dense disparity maps. The semi-dense disparity maps are computed with a local 1D fuzzy scanline stereo matching approach. Each map is associated to a confidence map that is used to remove bad matches. The Mean Shift algorithm is applied to simultaneously extract each vehicle and track the 3D points belonging to the same vehicle along the sequence. We show that several vehicles can be efficiently detected and that a semi-dense disparity map is sufficient to reach an accurate segmentation even when occlusions occur. This paper presents some results on real image sequences acquired in the context of Advanced Driver Assistance Systems.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This paper describes an original joint obstacle detection and tracking method based on a Mean Shift algorithm and semi-dense disparity maps. The semi-dense disparity maps are computed with a local 1D fuzzy scanline stereo matching approach. Each map is associated to a confidence map that is used to remove bad matches. The Mean Shift algorithm is applied to simultaneously extract each vehicle and track the 3D points belonging to the same vehicle along the sequence. We show that several vehicles can be efficiently detected and that a semi-dense disparity map is sufficient to reach an accurate segmentation even when occlusions occur. This paper presents some results on real image sequences acquired in the context of Advanced Driver Assistance Systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在半密集视差地图上使用Mean Shift分割的车辆检测和跟踪
本文提出了一种新颖的基于Mean Shift算法和半密集视差图的联合障碍物检测与跟踪方法。采用局部一维模糊扫描线立体匹配方法计算半密集视差图。每个映射都与一个置信度映射相关联,该置信度映射用于删除不良匹配项。采用Mean Shift算法同时提取每辆车,并沿序列跟踪属于同一辆车的三维点。我们证明了几种车辆可以有效地检测到,并且即使发生遮挡,半密集的视差图也足以达到准确的分割。本文给出了在高级驾驶辅助系统背景下获取的真实图像序列的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal experts' knowledge selection for intelligent driving risk detection systems Drivable space characterization using automotive lidar and georeferenced map information Manual convoying of automated urban vehicles relying on monocular vision Probabilistic trajectory prediction with Gaussian mixture models Field of safe travel: Using location and motion information to increase driver acceptance of pedestrian alerts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1