Variation-aware Analog Circuit Sizing with Classifier Chains

Zhengfeng Wu, I. Savidis
{"title":"Variation-aware Analog Circuit Sizing with Classifier Chains","authors":"Zhengfeng Wu, I. Savidis","doi":"10.1109/MLCAD52597.2021.9531273","DOIUrl":null,"url":null,"abstract":"In this work, a simulation-based optimization framework is proposed that determines the sizing of components of an analog circuit to meet target design specifications while also satisfying the robustness specifications set by the designer. The robustness is guaranteed by setting a limit on the standard deviations of the variations in the performance parameters of a circuit across all process and temperature corners of interest. Classifier chains are utilized that, in addition to modeling the relationship between inputs and outputs, learn the relationships among output labels. Additional design knowledge is inferred from the optimal ordering of the classifier chain. A case study is provided, where an LNA is designed in a 65 nm fabrication process. The corners of interest include the combination of the three temperatures of 20°C, 80°C, and 120°C, and the five process corners of typical-typical, slow-slow, fast-fast, slow-fast, and fast-slow. The adoption of classifier chains and the ensemble of classifier chains provides an improvement in the prediction accuracy as compared to the utilization of binary relevance. A qualified design solution is generated that satisfies both the performance and robustness specifications within 5 executed iterations of the design loop.","PeriodicalId":210763,"journal":{"name":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLCAD52597.2021.9531273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, a simulation-based optimization framework is proposed that determines the sizing of components of an analog circuit to meet target design specifications while also satisfying the robustness specifications set by the designer. The robustness is guaranteed by setting a limit on the standard deviations of the variations in the performance parameters of a circuit across all process and temperature corners of interest. Classifier chains are utilized that, in addition to modeling the relationship between inputs and outputs, learn the relationships among output labels. Additional design knowledge is inferred from the optimal ordering of the classifier chain. A case study is provided, where an LNA is designed in a 65 nm fabrication process. The corners of interest include the combination of the three temperatures of 20°C, 80°C, and 120°C, and the five process corners of typical-typical, slow-slow, fast-fast, slow-fast, and fast-slow. The adoption of classifier chains and the ensemble of classifier chains provides an improvement in the prediction accuracy as compared to the utilization of binary relevance. A qualified design solution is generated that satisfies both the performance and robustness specifications within 5 executed iterations of the design loop.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分类器链的变化感知模拟电路尺寸
在这项工作中,提出了一个基于仿真的优化框架,确定模拟电路组件的尺寸以满足目标设计规范,同时满足设计者设定的鲁棒性规范。鲁棒性是通过在电路的所有过程和感兴趣的温度角的性能参数变化的标准偏差上设置限制来保证的。使用分类器链,除了建模输入和输出之间的关系外,还学习输出标签之间的关系。从分类器链的最优排序中推断出额外的设计知识。提供了一个案例研究,其中设计了一个LNA在65纳米的制造工艺。感兴趣的角包括20°C、80°C和120°C三种温度的组合,以及典型-典型、慢-慢、快-快、慢-快、快-慢五个工艺角。采用分类器链和分类器链的集成,与使用二值关联相比,预测精度得到了提高。在设计循环的5次执行迭代中,生成满足性能和健壮性规范的合格设计解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT: An Adaptive Machine Learning Framework with Application to Lithography Hotspot Detection Approximate Divider Design Based on Counting-Based Stochastic Computing Division A Circuit Attention Network-Based Actor-Critic Learning Approach to Robust Analog Transistor Sizing Massive Figure Extraction and Classification in Electronic Component Datasheets for Accelerating PCB Design Preparation Fast Electrostatic Analysis For VLSI Aging based on Generative Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1